精英家教网 > 初中数学 > 题目详情
12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为64.

分析 根据等腰三角形的性质以及平行线的性质,得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=32,据此得出答案.

解答 解:如图,∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3
∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,
∴A6B6=32B1A2=64,
故答案为:64.

点评 本题考查的是平行线的性质、等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算题:
(1)(2x-y)2+2x(2y-x)-(x-y)(x+y)
(2)$\frac{{x}^{2}-4xy+4{y}^{2}}{{x}^{2}-xy}$÷(x+y-$\frac{3{y}^{2}}{x-y}$)+$\frac{1}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,点C、D在线段AB上,D是线段AB的中点,AD=3AC,AC=2,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算
(1)|-3|-5×(-$\frac{3}{5}$)+(-4)
(2)17-8÷(-2)+4×(-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)$\sqrt{4}$-$\root{3}{-8}$+$\sqrt{25}$
(2)$\sqrt{(-5)^{2}}$+|2-$\sqrt{5}$|-$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列算式中,①(-2016)2;②(-2)5;③-32016;④4×(-$\frac{1}{4}$)2-23÷(-8);⑤3024÷(-36)-2016;⑥(-2)3-$\frac{1}{6}$×5-$\frac{1}{6}$×(-32);计算结果是负数的有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b-c=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.按要求完成作图:
①作△ABC关于y轴对称的△A1B1C1
②S△ABC=2.5.

查看答案和解析>>

同步练习册答案