精英家教网 > 初中数学 > 题目详情

【题目】如图1AB是⊙O的直径,P为⊙O外一点,CD为⊙O上两点,连结OPCDPDPC.已知AB8

1)若OP5PD3,求证:PD是⊙O的切线;

2)若PDPC是⊙O的切线;

①求证:OPCD

②连结ADBC,如图2,若∠DAB50°,∠CBA70°,求弧CD的长.

【答案】1)证明见解析;(2)①证明解析;②弧CD的长为

【解析】

1)利用勾股定理的逆定理证明∠DOP90°即可.

2)①如图1中,连接OC.由切线长定理可知PDPC,因为ODOC,所以OP垂直平分线段CD,由此即可解决问题.

②求出圆心角∠DOC的度数即可解决问题.

1)证明:∵直径AB8

OD4

OP5PD3

OP2PD2+OD2

∴∠ODP90°

ODDP

PD是⊙O的切线.

2)①证明:如图1中,连接OC

PDPC是⊙O的切线,

PDPC

ODOC

OP垂直平分线段CD

OPCD

②解:如图2中,连接ODOC

OAODOBOC

∴∠A=∠ODA50°,∠B=∠OCB70°

∴∠AOD180°100°80°,∠BOC180°140°40°

∴∠DOC180°80°40°60°

∴弧CD的长=

故答案为:(1)证明见解析;(2)①证明解析;②弧CD的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.

1)求每张门票原定的票价;

2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知,点PAB边上的一个动点,点EF分别是CACB边的中点,过点PD,设,图中某条线段的长为y,如果表示yx的函数关系的大致图象如图2所示,那么这条线段可能是

A. PDB. PEC. PCD. PF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线x轴于点,交y轴于点C

求抛物线的解析式;

如图2D点坐标为,连结若点H是线段DC上的一个动点,求的最小值.

如图3,连结AC,过点Bx轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点Ex轴的平行线交AC于点F,已知

求点P的坐标;

在抛物线上是否存在一点Q,使得成立?若存在,求出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某民营企业准备用14000元从外地购进AB两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.

(1)该民营企业从外地购得AB两种商品各多少件?

(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将AB两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点P是射线BA上的一个动点,以BP为半径的交射线BC于点D,直线PD交直线AC于点E,点P关于直线AC的对称点为点,连结,设直线与直线BC交于点F

当点P在线段BA上时,

求证:

连结,当时,求的长;

连结ADAF,当恰为等边三角形时,求此时四边形的面积;

当四边形内部时,请直接写出BP的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,内接于,点是弧的中点,连接

1)如图1,若,求证:

2)如图2,若平分,求证:

3)在(2)的条件下,若,求的值.

查看答案和解析>>

同步练习册答案