【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).
(1)当点Q在边AC上时,正方形DEFQ的边长为 cm(用含x的代数式表示);
(2)当点P不与点B重合时,求点F落在边BC上时x的值;
(3)当0<x<2时,求y关于x的函数解析式;
(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.
【答案】(1)x;(2)x=;(3)见解析;(4)1<x<.
【解析】
试题分析:(1)由已知条件得到∠AQP=45°,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;
(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP=2x,列方程于是得到结论;
(3)如图②,当0<x≤时,根据正方形的面积公式得到y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,根据正方形和三角形面积公式得到y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;
(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=,得到x=,于是得到结论.
试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,
∴∠AQP=45°,
∴PQ=AP=2x,
∵D为PQ中点,
∴DQ=x,
(2)如图①,延长FE交AB于G,由题意得AP=2x,
∵D为PQ中点,
∴DQ=x,
∴GP=2x,
∴2x+x+2x=4,
∴x=;
(3)如图②,当0<x≤时,y=S正方形DEFQ=DQ2=x2,
∴y=x2;
如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,
∵PQ=AP=2x,CK=2﹣2x,
∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,
∴y=S正方形DEFQ﹣S△MNF=DQ2﹣FM2,
∴y=x2﹣(5x﹣4)2=﹣x2+20x﹣8,
∴y=﹣x2+20x﹣8;
如图④,当1<x<2时,PQ=4﹣2x,
∴DQ=2﹣x,
∴y=S△DEQ=DQ2,
∴y=(2﹣x)2,
∴y=x2﹣2x+2;
(4)当Q与C重合时,E为BC的中点,
即2x=2,
∴x=1,
当Q为BC的中点时,BQ=,
PB=1,
∴AP=3,
∴2x=3,
∴x=,
∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A,B分别为x轴、y轴正半轴上两动点,∠BAO的平分线与∠OBA的外角平分线所在直线交于点C,则∠C的度数随A,B运动的变化情况正确的是( )
A.点B不动,在点A向右运动的过程中,∠C的度数逐渐减小
B.点A不动,在点B向上运动的过程中,∠C的度数逐渐减小
C.在点A向左运动,点B向下运动的过程中,∠C的度数逐渐增大
D.在点A,B运动的过程中,∠C的度数不变
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.
(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;
(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用二元一次方程组解应用题:甲、乙两地相距 ,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行, 小时后相遇.相遇后,拖拉机以其原速继续前进,汽车在相遇处停留 小时后调转车头以其原速返回,在汽车再次出发半小时追上拖拉机.这时,汽车、拖拉机各自走了多少路程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.“某射击运动员射击一次,正中靶心”属于随机事件
B.“13名同学至少有两名同学的出生月份是相同的”属于必然事件
C.“在标准大气压下,当温度降到-5℃时,水结成冰”属于随机事件
D.“某袋中有8个质地均匀的球,且都是红球,任意摸出一球是白球”属于不可能事件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.
(1)正方体的棱长为 cm;
(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;
(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题:
(1) , ;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 ;
(3)从选航模项目的名学生中随机选取名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的名学生中恰好有名男生、名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com