【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在一个点M,使得PM = MC,则称点P为⊙C的“等径点”.已知点D
,E
,F
.
(1)当⊙O的半径为1时,
①在点D,E,F中,⊙O的“等径点”是 ;
②作直线EF,若直线EF上的点T(m,n)是⊙O的“等径点”,求m的取值范围.
(2)过点E作EG⊥EF交x轴于点G,若△EFG上的所有点都是某个圆的“等径点”,求这个圆的半径r的取值范围.
【答案】(1) ①D、F;②
;(2)![]()
【解析】
(1)①根据“等径点”的定义可知,“等径点”到圆心的距离小于等于圆的半径的2倍,由此即可判定;
②如图2中,设直线EF交半径为2的⊙O于点K,连接OK,作KM⊥OF于M.当点T在线段FK上时,点T是“等径点”,求出点K的坐标即可解决问题;
(2)因为△EFG各边上所有的点都是某个圆的“等径点”,所以这个圆的圆心Q是线段FG的中点,易知Q(2,0),设这个圆的半径为r.根据QG≤2r,构建不等式即可解决问题;
(1)根据“等径点”的定义可知,“等径点”到圆心的距离小于等于圆的半径的2倍.即半径为1的⊙O的“等径点”在以O为圆心2为半径的圆内或圆上.
如图1中,观察图象可知:在点D,E,F中,⊙O的“等径点”是D,F.
![]()
故答案为D,F;
②如图2中,设直线EF交半径为2的⊙O于点K,连接OK,作KM⊥OF于M.
![]()
∵OF=2,OE=2
,
∴tan∠EFO=
=
,
∴∠OFK=60°,
∵OF=OK,
∴△OFK是等边三角形,
∴OF=OK=FK=2,
∵KM⊥OF,
∴FM=OM=1,KM=
=
,
∴K(1,
),
∵当点T在线段FK上时,点T是“等径点”,
∴2≤m≤1.
(2)如图3中,
![]()
∵△EFG是直角三角形,∠FEG=90°,∠EFG=60°,
∴EF=2OF=4,FG=2EF=8,
∴OG=6,
由题意△EFG各边上所有的点都是某个圆的“等径点”,这个圆的圆心Q是线段FG的中点,Q(2,0),设这个圆的半径为r.
由题意:QG≤2r
∴4≤2r,
∴r≥2,
即这个圆的半径r的取值范围为r≥2.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
![]()
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(
,0)、B(0,4),则点B2020的横坐标为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作
,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交
于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
![]()
A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面坐标系xOy中,点A的坐标为(1,0),点P的横坐标为2,将点A绕点P旋转,使它的对应点B恰好落在x轴上(不与A点重合);再将点B绕点O逆时针旋转90°得到点C.
![]()
(1)直接写出点B和点C的坐标;
(2)求经过A,B,C三点的抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数y=
(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,抛物线y=x2﹣bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.
(1)求抛物线的解析式;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com