精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB、CD相交于点O,PCD上一点,

(1)过点PAB的垂线段PE;

(2)过点PCD的垂线,与AB相交于点F;

(3)将线段PE、PF、FO从小到大排列为_____,这样排列的依据是_____

【答案】PE<PF<OF 用垂线段最短

【解析】

(1)把三角板的一条直角边与已知直线AB重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和P点重合,过P点沿三角板的直角边画直线即可;
(2)把三角板的一条直角边与已知直线CD重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和P点重合,过P点沿三角板的直角边画直线即可;
(3)利用垂线段最短得出即可.

解:(1)如图,PE为所作;

(2)如图,PF为所作;

(3)利用垂线段最短可判断PE<PF<OF.

故答案为PE<PF<OF;垂线段最短.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“*”是新规定的这样一种运算法则:a*b=a2+2ab,比如3*(﹣2)=32+2×3×(﹣2)=﹣3

(1)试求2*(﹣3)的值;

(2)2*x=2,求x的值;

(3)若(﹣2)*(1*x)=x+9,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蚂蚁从点O出发,在一条直线上来回爬行.假定向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程依次记为(单位:cm):+5,-3,+10,-8,-6,+12,-10.

(1)蚂蚁最后是否回到出发点O

(2)蚂蚁离开出发点O最远是多少?

(3)在爬行过程中,如果每爬行1奖励一粒糖,那么蚂蚁一共得到多少粒糖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由 ,线段CD和线段BD所围成图形的阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.
(1)求证:BC是⊙O的切线;
(2)若AC=3,BC=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点DFEG都在ABC的边上,EFAD1=2BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)

解:∵EFAD,(已知)

∴∠2=      

∵∠1=2,(已知)

∴∠1=      

      ,(   

∴∠AGD+   =180°,(两直线平行,同旁内角互补)

   ,(已知)

∴∠AGD=   (等式性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段 AB 的长为 10cm,C 是直线 AB 上一动点,M 是线段 AC的中点,N 是线段 BC 的中点.

(1)若点 C 恰好为线段 AB 上一点,求MN等于多少cm;

(2)猜想线段 MN 与线段 AB 长度的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=kx+b(k<0)与函数y= (x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE,设A、C两点的坐标分别为(a, )、(c, ),其中a>c>0.
(1)如图①,求证:∠EDP=∠ACP;

(2)如图②,若A、D、E、C四点在同一圆上,求k的值;

(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论: ①b<1;②c<2;③0<m< ;④n≤1.
则所有正确结论的序号是

查看答案和解析>>

同步练习册答案