精英家教网 > 初中数学 > 题目详情

【题目】为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:

Ⅰ)扇形 ①的圆心角的大小是   

Ⅱ)求这40个样本数据的平均数、众数、中位数;

Ⅲ)若该校九年级共有320名学生,估计该校理化实验操作得满分(10分)有多少人.

【答案】(1)36°;(2)平均数是8.3,众数是9,中位数是8;(3)得满分约有56

【解析】

(1)用360°乘以①所占百分比即可得解;

(2)根据平均数的定义计算出平均数;找出这组数据中出现次数最多的即为众数;把数据从小到大的顺序排列,找出中位数即可;

(3)用九年级总人数乘以得满分人数所占百分比即可得解.

(Ⅰ)360°×(1﹣15%﹣27.5%﹣30%﹣17.5%)

=360°×10%

=36°;

故答案为:36°;

(Ⅱ)∵==8.3,

平均数是8.3,

∵9出现了12次,次数最多,

众数是9,

40个数字按从小到大排列,中间的两个数都是8,

中位数是=8;

(Ⅲ)∵320×17.5%=56,

满分约有56人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文教用品商店欲购进两种笔记本,用元购进的种笔记本与用元购进的种笔记本的数量相同,每本种笔记本的进价比每本种笔记本的进价贵.

1)求两种笔记本每本的进价分别为多少元?

2)若该商店种笔记本每本售价元,种笔记本每本售价元,准备购进两种笔记本共本,且这两种笔记本全部售出后总获利不小于元,则最多购进种笔记本多少本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 小明遇到这样一个问题

如图1ABC中,∠ACB=90°,点DAB上,且BD=BC,求证:∠ABC=2ACD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法2:如图2,作BECD,垂足为点E

方法3:如图3,作CFAB,垂足为点F

根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2ACD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,A04),B80),C84).

1)试说明四边形AOBC是矩形.

2)在x轴上取一点D,将△DCB绕点C顺时针旋转90°得到△D'CB'(点D'与点D对应).

①若OD3,求点D'的坐标.

②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图乙,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线 BD,CE的交点.

(1)如图甲,将△ADE 绕点A 旋转,当 C、D、E 在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)

①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)

(2)若 AB=4,AD=2,把△ADE 绕点 A 旋转,

①当∠CAE=90°时,求 PB 的长;

②直接写出旋转过程中线段 PB 长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点为斜边上的一点,连接,将沿翻折,使点落在点处,点为直角边上一点,连接,将沿翻折,点恰好与点重合.若,则_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面m,与篮圈中心的水平距离为7 m,球出手后水平距离为4 m时达到最大高度4 m,设篮球运行轨迹为抛物线,篮圈距地面3 m.

(1)建立如图所示的平面直角坐标系,问此球能否准确投中?

(2)此时,对方队员乙在甲面前1 m处跳起盖帽拦截,已知乙的最大摸高为3.1 m,那么他能否获得成功?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,O为坐标原点,A11),在x轴上确定点P,使AOP为等腰三角形,则符合条件的点P的个数共有(

A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案