【题目】如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.
(1)求抛物线的解析式.
(2)设点P为抛物线对称轴上的一个动点.
①如图①,若点P为抛物线的顶点,求△PBC的面积.
②是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.
【答案】
(1)
解:∵抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),
∴ ,解得 ,
∴抛物线解析式为y=x2﹣2x﹣3
(2)
解:①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴P(1,4),且C(0,﹣3),
设直线BC解析式为y=kx+m,则有 ,解得 ,
∴直线BC解析式为y=x﹣3,
设对称轴交BC于点E,如图1,
则E(1,﹣2),
∴PE=﹣2﹣(﹣4)=2,
∴S△PBC= PEOB= ×3×2=3;
②设P(1,t),由①可知E(1,﹣2),
∴PE=|t+2|,
∴S△PBC= OBPE= |t+2|,
∴ |t+2|=6,解得t=2或t=﹣6,
∴P点坐标为(1,2)或(1,﹣6),
即存在满足条件的点P,其坐标为(1,2)或(1,﹣6)
【解析】(1)把A、B两点坐标代入抛物线解析式,可求得b、c的值,可求得抛物线解析式;(2)①由抛物线解析式可求得P、C的坐标,可求得直线BC解析式,设对称轴交直线BC于点E,则可求得E点坐标,可求得PE的长,则可求得△PBC的面积;②设P(1,t),则可用t表示出△PBC的面积,可得到t的方程,则可求得P点坐标.
科目:初中数学 来源: 题型:
【题目】如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3═An﹣1An=1,分别过点A1、A2、A3、…、An作x轴的垂线,交反比例函数y= (x>0)的图象于点B1、B2、B3、…、Bn , 过点B2作B2P1⊥A1B1于点P1 , 过点B3作B3P2⊥A2B2于点P2 , …,若记△B1P1B2的面积为S1 , △B2P2B3的面积为S2 , …,△BnPnBn+1的面积为Sn , 则S1+S2+…+S2017= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
甲 | 乙 | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(毛利润=(售价 进价)×销售量)
(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )
A.汽车在高速公路上的行驶速度为100km/h
B.普通公路总长为90km
C.汽车在普通公路上的行驶速度为60km/h
D.汽车出发后4h到B地
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com