精英家教网 > 初中数学 > 题目详情

【题目】如图,是矩形对角线的交点,

求证:四边形是菱形.

,求四边形的面积.

【答案】(1)见解析;(2)6.

【解析】(1)根据矩形的性质得出AC=2CO,BD=2DO,AC=BD,推出DO=CO,先求出四边形OCED是平行四边形,再根据菱形的判定求出即可;
(2)根据矩形的性质得出AO=CO,∠ADC=90°,求出△ADC的面积为6,即可求出SADO=SDCO=SADC=3,证△DCE≌△COD,得出SDCE=SCOD=3,即可求出四边形OCED的面积.

证明:四边形是矩形,



四边形是平行四边形,
四边形是菱形;

解:四边形是矩形,


的面积为

四边形是菱形,

中,



四边形的面积是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.

(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)如图,四边形ABCDAB∥CDAB≠CDBD=AC

1)求证:AD=BC

2)若EFGH分别是ABCDACBD的中点,求证:线段EF与线段GH互相垂直平分。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:

获奖等次

频数

频率

一等奖

10

0.05

二等奖

20

0.10

三等奖

30

b

优胜奖

a

0.30

鼓励奖

80

0.40

请根据所给信息,解答下列问题:

(1)a= , b= , 且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=5,BD=13,Rt△EFG的直角边GE在CB的延长线上,E点与矩的B点重,∠FGE=90°,FG=3.将矩形ABCD固定,把Rt△EFG沿着射线BC方向运动,当点F恰好经过BD时,将△EFG绕点F逆时针旋转α°(0°<α°<90°),记旋转中的△EFG为△E′F′G′,在旋转过程中,设直线E′G′与直线BC交于N,与直线BD交于M点,当△BMN为以MN为底边的等腰三角形时,FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2﹣2x﹣6 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点,点E在抛物线上,且横坐标为4 ,AE与y轴交F.

(1)求抛物线的顶点D和F的坐标;
(2)点M,N是抛物线对称轴上两点,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;
(3)连接BC交对称轴于点P,点Q是线段BD上的一个动点,自点D以2 个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤ )秒,求使得△D′PQ与△PQB重叠部分的面积为△DPQ面积的 时对应的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形纸片ABC中,点D在边AB(不包含端点AB)上运动,连接CD,将ADC对折,点A落在直线CD上的点A′处,得到折痕DE;将BDC对折,点B落在直线CD上的点B′处,得到折痕DF

1)若ADC=80°,求BDF的度数;

2)试问EDF的大小是否会随着点D的运动而变化?若不变,求出EDF的大小;若变化,请说明理由.

查看答案和解析>>

同步练习册答案