【题目】平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).
(1)当α=0°时,连接DE,则∠CDE= °,CD= ;
(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;
(3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长;
(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.
【答案】(1)90,;(2),无变化,(3)BD=;(4)即:BD=或.
【解析】试题分析:(1)①根据直径的性质,由DE∥AB得即可解决问题.②求出BD、AE即可解决问题.
(2)只要证明△ACE∽△BCD即可.
(3)求出AB、AE,利用△ACE∽△BCD即可解决问题.
(4)分类讨论:①如图5中,当α=90°时,半圆与AC相切,②如图6中,当α=90°+∠ACB时,半圆与BC相切,分别求出BD即可.
试题解析:(1)解:①如图1中,当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴=.∵BC=n,∴CD=.故答案为:90°,n.
②如图2中,当α=180°时,BD=BC+CD=n,AE=AC+CE=m,∴=.故答案为:.
(2)如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴.
(3)如图4中,当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB==6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE===3,由(2)可知△ACE∽△BCD,∴,∴=,∴BD=.故答案为:.
(4)∵m=6,n=,∴CE=3,CD=2,AB==2,①如图5中,当α=90°时,半圆与AC相切.在Rt△DBC中,BD===2.
②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE==,由(2)可知=,∴BD=.
故答案为:2或.
科目:初中数学 来源: 题型:
【题目】我们在《有理数》这一章中学习过绝对值的概念:
一般的,数轴上表示数的点与原点的距离叫做数的绝对值,记作.
实际上,数轴上表示数的点与原点的距离可记作,数轴上表示数的点与表示数2的点的距离可记作,那么:
(1)①数轴上表示数3的点与表示数1的点的距离可记作 .
②数轴上表示数的点与表示数2的点的距离可记作 .
③数轴上表示数的点与表示数的点的距离可记作 .
(2)数轴上与表示数的点的距离为5的点有 个,它表示的数为 .
(3)拓展:①当数取值为 时,数轴上表示数的点与表示数的点的距离最小.
②当整数取值为 时,式子有最小值为 .
③当取值范围为 时,式子有最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察如图所示的图形,回答下列问题:
(1)按甲方式将桌子拼在一起.
4张桌子拼在一起共有 个座位,n张桌子拼在一起共有 个座位;
(2)按乙方式将桌子拼在一起.
6张桌子拼在一起共有 个座位,m张桌子拼在一起共有 个座位;
(3)某食堂有A,B两个餐厅,现有102张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a张桌子放在A餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有404个座位,问A,B两个餐厅各有多少个座位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中∠E=60°,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论:
甲:线段AF与线段CD的长度总相等;
乙:直线AF和直线CD所夹的锐角的度数不变;
那么,你认为( )
A. 甲、乙都对 B. 乙对甲不对
C. 甲对乙不对 D. 甲、乙都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与二次函数(为常数)的图象交于两点,且点的坐标为.
(1)求出的值及点的坐标;
(2)设,若时,随着的增大而增大,且也随着的增大而增大,求的最小值和的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:(ⅰ)如果两个函数 ,存在 取同一个值,使得,那么称 为“互联互通函数”,称对应的值为 的“互联点”; (ⅱ)如果两个函数为“互联互通函数”,那么的最大值称为的“互通值”.
(1)判断函数与是否为“互通互联函数”,如果是,请求出时他们的“互联点”,如果不是,请说明理由;
(2)当时,已知函数与是“互联互通函数”.且有唯一“互联点”;
①求出的取值范围;
②若他们的“互通值”为18 ,试求出 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.
(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;
(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
()写出扇形图中__________,并补全条形图.
()在这次抽测中,测试成绩的众数和中位数分别是__________个、__________个.
()该区体育中考选报引体向上的男生共有人,如果体育中考引体向上达个以上(含个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com