精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 , 再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 , 以此类推…则正方形OB2016B2017C2017的顶点B2017的坐标是( )

A.(21008 , 0)
B.(21008 , 21008
C.(0,21008
D.(21007 , 21007

【答案】B
【解析】观察,发现:B1(1,1),B2(0,2),B3(﹣2,2),B4(﹣4,0),B5(﹣4,﹣4),B6(0,﹣8),B7(8,﹣8),B8(16,0),B9(16,16),…,

∴B8n+1(24n,24n)(n为自然数).

∵2017=8×252+1,

∴点B2017的坐标为(21008,21008).

所以答案是:B.

【考点精析】本题主要考查了正方形的性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题
(1)先解不等式组 ,然后判断 是不是此不等式组的一个整数解.
(2)化简求值:先化简 ,再从1,2,3中选取一个适当的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个角的两边分别平行,若其中一个角比另一个角的2倍少30°,则这两个角的度数分别为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着科技与经济的发展,机器人自动化线的市场越来越大,并且逐渐成为自动化生产线的主要方式某化工厂要在规定时间内搬运1800千克化工原料,现有AB两种机器人可供选择,已知A型机器人每小时完成的工作量是B型机器人的1.5倍,A型机器人单独完成所需的时间比B型机器人少10小时.

1)求两种机器人每小时分别搬运多少千克化工原料?

2)若A型机器人工作1小时所需的费用为80元,B型机器人工作1小时所需的费用为60元,若该工厂在两种机器人中选择其中的一种机器人单独完成搬运任务,则选择哪种机器人所需费用较小?请计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF.

(1)求证:ADCF

(2)连接AF,试判断ACF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB在数轴上分别表示有理数abAB两点之间的距离表示为AB,在数轴上AB两点之间的距离AB|ab|

利用数形结合思想回答下列问题:

(1)数轴上表示13两点之间的距离   

(2)数轴上表示﹣12和﹣6的两点之间的距离是   

(3)数轴上表示x1的两点之间的距离表示为   

(4)x表示一个有理数,且﹣4x2,则|x2|+|x+4|   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:|a+1|+(5b)2+|c+2|0abc分别是点ABC在数轴上对应的数.

(1)abc的值,并在数轴上标出ABC

(2)若甲、乙、丙三个动点分别从ABC三点同时出发沿数轴负方向运动,它们的速度分别是2(单位长度/),当乙追上丙时,乙是否追上了甲?为什么?

(3)在数轴上是否存在一点P,使PABC的距离和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.

无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:

住宿费

(2人一间的标准间)

伙食费

市内交通费

旅游景点门票费

(身高超过1.2米全票)

每间每天x

每人每天100元

每人每天y

每人每天120元

假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.

(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求xy的值;

(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求回答问题:
(1)发现
如图1,直线l1∥l2 , l1和l2的距离为d,点P在l1上,点Q在l2上,连接PQ,填空:PQ长度的最小值为.

(2)应用
如图2,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上,AM=3MD,点N在直线BC上,连接MN,求MN长度的最小值

(3)拓展
如图3,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值

查看答案和解析>>

同步练习册答案