精英家教网 > 初中数学 > 题目详情

【题目】在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是(  )

x/kg

0

1

2

3

4

5

y/cm

20

20.5

21

21.5

22

22.5

A. xy都是变量,且x是自变量,yx的函数

B. 弹簧不挂重物时的长度为0 cm

C. 物体质量每增加1 kg,弹簧长度y增加0.5 cm

D. 所挂物体质量为7 kg时,弹簧长度为23.5 cm

【答案】B

【解析】

根据自变量、因变量的含义,以及弹簧的长度与所挂物体质量之间的关系逐一判断即可.

xy都是变量且存在一一对应关系,所以 yx的函数,且x是自变量,A选项不符合题意;弹簧不挂重物时长度为20cm,B选项符合题意;20.5-20=0.5,21-20.5=0.5,21.5-21=0.5,22-21.5=0.5,22.5-22=0.5,所以物体质量每增加1 kg,弹簧长度y增加0.5 cm,C选项不符合题意;当所挂物体质量为7 kg时,弹簧长度为23.5 cm,D选项不符合题意;正确答案选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列结论中,错误的有(  )

①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】央视热播节目朗读者激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从文史类、社科类、小说类、生活类中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:

(1)此次共调查了   名学生;

(2)将条形统计图补充完整;

(3)图2小说类所在扇形的圆心角为   度;

(4)若该校共有学生2500人,估计该校喜欢社科类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB=14,BC=8,点E为边BC上一点,且BE=5,将纸片沿过点E的一条直线l翻折,使点B落在直线CD上,若l与矩形的边的另一个交点为F,则EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.

(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(05),直线x=-5x轴交于点D,直线y=-xx轴及直线x=-5分别交于点CE.BE关于x轴对称,连接AB.

(1)求点CE的坐标及直线AB的解析式;

(2)SSCDES四边形ABDO,求S的值;

(3)在求(2)S时,嘉琪有个想法:CDE沿x轴翻折到CDB的位置,而CDB与四边形ABDO拼接后可看成AOC,这样求S便转化为直接求AOC的面积,如此不更快捷吗?但大家经反复验算,发现SAOCS,请通过计算解释他的想法错在哪里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把部分的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

均为正整数时,若,用含mn的式子分别表示,得      

2)利用所探索的结论,找一组正整数,填空:    (      )2

3)若,且均为正整数,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒 个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,过点Q作QN⊥x轴于N,交抛物线于点M,连结MC,MB,当t为何值时,△MCB的面积最大,并求出此时点M的坐标和△MCB面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在△ ABC中,ADAE分别是 ABC的高和角平分线,若∠B=30°,∠C=50°.

(1)求∠DAE的度数.

(2)试写出 DAE与∠C-B有何关系?(不必证明)

查看答案和解析>>

同步练习册答案