【题目】A,C,B三地依次在一条笔直的道路上甲、乙两车同时分别从A,B两地出发,相向而行.甲车从A地行驶到B地就停止,乙车从B地行驶到A地后,立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发的间(b)之间的函数关系如图所示,则甲车到达B地时,乙车距B地的距离为_____km.
科目:初中数学 来源: 题型:
【题目】如图,一艘船由港沿北偏东65°方向航行至港,然后再沿北偏西40°方向航行至港,港在港北偏东20°方向,则两港之间的距离为( ).
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数,反比例函数或二次函数中的一种)
x(亩) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,半径直径与相切于点连接交于点交于点,连接并延长交于点,连接.
求证: ;
若
①求证:四边形是平行四边形;
②连接,当的半径为时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.
(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?
(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.
(1)求∠BCD的度数;
(2)求旗杆AC的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.
(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列6×6的网格中,横、纵坐标均A(0,3),B(5,3)、C(1,5)都是格点在网格中仅用无刻度的直尺作图,保留作图痕迹.
(1)画出以AB为斜边的等腰Rt△ABD(D在AB下方);
(2)连接CD交AB于点E,则∠ACE的度数为 ;
(3)在直线AB下方找一个格点F,连接CF,使∠ACF=∠AEC,直接写出F点坐标 ;
(4)由上述作图直接写出tan∠AEC的值 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com