【题目】某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.
(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?
(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.
【答案】(1)50,25;(2)20
【解析】
(1)先将10.5万元化为105000元,设该乡镇有名高中学生获得了资助,则该乡镇有2x名初中学生受到资助,由题意得一元一次方程,求解即可;
(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t,化为关于t的一元二次方程,求解出t,再根据a%=t,求得a即可.
(1)10.5万元=105000元
设该乡镇有名高中学生获得了资助,则该乡镇有名初中学生受到资助,由题意得:
解得:
∴
∴该乡镇分别有50名初中学生和25名高中学生获得了资助.
(2)由题意得:
∴
设,则方程化为:
∴
解得(舍)或
∴.
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市促销活动,将A,B,C三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A,B,C三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A,B,C三种水果6kg,3kg,1kg;乙种方式每盒分别装A,B,C三种水果2kg,6kg,2kg.甲每盒的总成本是每千克A水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,则销售总利润率为_____.(利润率=利润÷成本×100%)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 C 为 Rt△ACB 与 Rt△DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G.若 AC=BC=25,CE=15, DC=20,则的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠B=60°,BC=2.将△ABC绕点C顺时针旋转,得到△A′B′C,连接AB′,且A,B′,A′在同一条直线上,则AA′=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线过点(1,0)和点(0,-3),且顶点在第三象限,设m=a-b+c,则m的取值范围是( )
A.-6<m<0B.-6<m<-3C.-3<m<0D.-3<m<-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O交BC于点E,过点E作EF⊥AB于点F.
(1)判断EF所在直线与⊙O的位置关系,并说明理由.
(2)若∠B=40°,⊙O的半径为6,求的长.(结果保留π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com