精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,的切线,连接E,过点AF,交D,连接

1)求证:

2)若,求的长.

【答案】1)见解析;(2.

【解析】

1)根据切线的性质可得∠CAF+BAD=90°,根据同角的余角相等可得,进一步根据圆周角定理的推论即可证得结论;

2)由(1)的结论和正切的定义在直角△OAC中可求得AC的长,再在直角△ACF中利用正切的定义和勾股定理即可求出结果.

解:(1)证明:∵的切线,∴∠CAO=90°,即∠CAF+BAD=90°

,∴∠AFC=90°,∴∠CAF+C=90°

2)∵的直径,,∴AO=6

,∴AC=8

在直角△ACF中,∵AF=3xCF=4x,则由勾股定理得:AC=5x

5x=8,∴,∴.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线的顶点为A,抛物线的顶点为B,其中m≠2,抛物线相交于点P

1)当m=﹣3时,在所给的平面直角坐标系中画出C1C2的图象;

2)已知点C(﹣21),求证:点ABC三点共线;

3)设点P的纵坐标为q,求q的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10/千克,在第天的销售量与销售单价如下(每天内单价和销售量保持一致):

销售量(千克)

销售单价(元/千克)

时,

时,

设第天的利润元.

1)请计算第几天该品种草莓的销售单价为25/千克?

2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象与x轴相交于点A反比例函数相交于两点.

1)利用图中条件,求反比例函数和一次函数的解析式;

2)连接OB,OC,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线x轴、y轴分别交于点ABC的中点,点D在直线上,以为直径的圆与直线的另一交点为E,交y轴于点FG,已知,则的长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是半圆O的直径,MN是半圆上不与AB重合的两点,且点N.

1)如图1MA6MB8,∠NOB60°,求NB的长;

2)如图2,过点MMCAB于点CPMN的中点,连接MBNAPC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应的任务.

古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S(其中abc是三角形的三边长,S为三角形的面积),并给出了证明

例如:在△ABC中,a3b4c5,那么它的面积可以这样计算:

a3b4c5

6

S6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

根据上述材料,解答下列问题:

如图,在△ABC中,BC7AC8AB9

1)用海伦公式求△ABC的面积;

2)如图,ADBE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年712月这6个月资助学生共支出10.5万元.

1)问该乡镇分别有多少名初中学生和高中学生获得了资助?

22018712月期间,受资助的初、高中学生中,分别有30%40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年16月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,201916月被评为优秀学生的初、高中学生分別比2018712月的人数增加了3a%a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=∠BCD90°AC平分∠BADAC7AD3,将四边形ABCD沿直线l无滑动翻滚一周,则对角线BD的中点O经过的路径长度为_____

查看答案和解析>>

同步练习册答案