【题目】如图,从数轴上的原点开始,先向左移动2cm到达A点,再向左移动4cm到达B点,然后向右移动10cm到达C点.
(1)用1个单位长度表示1cm,请你在题中所给的数轴上表示出A、B、C三点的位置;
(2)把点C到点A的距离记为CA,则CA=______cm;
(3)若点B以每秒3cm的速度向左移动,同时A、C点以每秒lcm、5cm的速度向右移动,设移动时间为t(t>0)秒,试探究CA﹣AB的值是否会随着t的变化而改变?请说明理由.
【答案】(1)如图所示:见解析;(2)CA=6cm;(3)CA﹣AB的值不会随着t的变化而变化,理由见解析.
【解析】
(1)根据数轴上点的移动规律,在数轴上表示出A,B,C的位置即可;(2)根据数轴上两点间的距离公式求出CA的长即可;(3)当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.
(1)如图所示:
(2)CA=4﹣(﹣2)=4+2=6(cm);
故答案为:6.
(3)CA﹣AB的值不会随着t的变化而变化,理由如下:
根据题意得:CA=(4+5t)﹣(﹣2+t)=6+4t,AB=(﹣2+t)﹣(﹣6﹣3t)=4+4t,
∴CA﹣AB=(6+4t)﹣(4+4t)=2,
∴CA﹣AB的值不会随着t的变化而变化.
科目:初中数学 来源: 题型:
【题目】有一直角三角形纸片,∠C=90°,BC=6,AC=8,现将△ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小区规划一个长70m、宽30m的长方形草坪上修建三条同样宽的甬道,使其中两条与AB平行,另一条与BC平行,场地其余部分种草,甬道的宽度为xm.
(1)用含x的代数式表示草坪的总面积S;
(2)如果每一块草坪的面积都相等,且甬道的宽为1m,那么每块草坪的面积是多少平方米?(精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用5个棱长为1的正方体组成如图所示的几何体.
(1)该几何体的体积是多少立方单位,表面积是多少平方单位(包括底面积);
(2)请在方格纸中用实线画出它的三个视图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“六城”同创活动中,为努力把我市建成“国家园林城市”,绿化公司计划购买A,B,C三种绿化树共800株,用20辆货车一次运回,对我市城区新建道路进行绿化.按计划,20辆货车都要装运,每辆货车只能装运同一种绿化树,且必须装满.根据下表提供的信息,解答以下问题:
绿 化 树 品 种 | A | B | C |
每辆货车运载量(株) | 40 | 48 | 32 |
每株树苗的价格(元) | 20 | 50 | 30 |
(1)设装运A种绿化树的车辆数为x,装运B种绿化树的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种绿化树的车辆数都不多于8辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若在“六城”同创活动中要求“厉行节约”办实事,则应采用(2)中的哪种安排方案?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com