·ÖÎö ¢Ù¸ù¾ÝÖ±½ÇÈý½ÇÐεÄÐÔÖÊÇóµÃAºÍCµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó½â£»
¢Ú·Ö³ÉPÔÚÏß¶ÎACÉϺÍÔÚACµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÇóµÃPºÍQµÄ×ø±ê£¬Ôòd¼´¿ÉÀûÓÃt±íʾ£»
¢Û¸ù¾Ý¢ÚµÄ½á¹ûÒÔ¼°PA=$\frac{5}{6}$d¼´¿ÉÇóµÃtµÄÖµ£¬È»ºóÖ¤Ã÷¡÷EMO¡Õ¡÷BCP£¬¼´¿É½â´ð£®
½â´ð ½â£º¢Ù¡ßÖ±½Ç¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏBAC=60¡ã£¬
¡à¡ÏABC=30¡ã£¬
¡àAC=$\frac{1}{2}$AB=$\frac{1}{2}$¡Á8=4£¬
ÓÖ¡ßÖ±½Ç¡÷AOCÖУ¬¡ÏACO=30¡ã£¬
¡àOA=$\frac{1}{2}$AC=$\frac{1}{2}$¡Á4=2£¬
ÔòOC=$\sqrt{A{C}^{2}-O{A}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$£¬
ÔòAµÄ×ø±êÊÇ£¨-2£¬0£©£¬CµÄ×ø±êÊÇ£¨0£¬2$\sqrt{3}$£©£¬
ÉèACµÄ½âÎöʽÊÇy=kx+b£¬
Ôò$\left\{\begin{array}{l}{-2k+b=0}\\{b=2\sqrt{3}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=\sqrt{3}}\\{b=2\sqrt{3}}\end{array}\right.$£¬
ÔòÖ±ÏßACµÄ½âÎöʽÊÇy=$\sqrt{3}$x+2$\sqrt{3}$£»
¢ÚOB=AB-OA=8-2=6£¬ÔòBµÄ×ø±êÊÇ£¨6£¬0£©£¬
ÉèBCµÄ½âÎöʽÊÇy=mx+n£¬
Ôò$\left\{\begin{array}{l}{-6m+n=0}\\{n=2\sqrt{3}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-\frac{\sqrt{3}}{3}}\\{n=2\sqrt{3}}\end{array}\right.$£¬
ÔòBCµÄ½âÎöʽÊÇy=-$\frac{\sqrt{3}}{3}$x+2$\sqrt{3}$£®
µ±-2£¼t¡Ü0ʱ£¬Èçͼ1£¬
°Ñx=t´úÈëy=$\sqrt{3}$x+2$\sqrt{3}$µÃ£¬
y=$\sqrt{3}$t+2$\sqrt{3}$£¬
ÔòPµÄ×ø±êÊÇ£¨t£¬$\sqrt{3}$t+2$\sqrt{3}$£©£¬
°Ñy=$\sqrt{3}$t+2$\sqrt{3}$´úÈëy=-$\frac{\sqrt{3}}{3}$x+2$\sqrt{3}$£¬
µÃ£º$\sqrt{3}$t+2$\sqrt{3}$=-$\frac{\sqrt{3}}{3}$x+2$\sqrt{3}$£¬
½âµÃ£ºx=-3t£¬
¼´QµÄ×ø±êÊÇ£¨-3t£¬$\sqrt{3}$t+2$\sqrt{3}$£©£¬
Ôòd=-3t-t=-4t£»
µ±t£¾0ʱ£¬Èçͼ2£¬Í¬ÀíÇóµÃPµÄ×ø±êÊÇ£¨t£¬$\sqrt{3}$t+2$\sqrt{3}$£©£¬
QµÄ×ø±êÊÇ£¨-3t£¬$\sqrt{3}$t+2$\sqrt{3}$£©£¬
Ôòd=t-£¨-3t£©=4t£»
¢Ûµ±-2£¼t¡Ü0ʱ£¬PA=2£¨t+2£©£¬Ôò2£¨t+2£©=$\frac{5}{6}$£¨-4t£©£¬½âµÃt=-$\frac{1}{4}$£¬
OE£¼OB£¼BC£¼BP£¬²»Âú×ãÌõ¼þ£»µ±PÔÚÏß¶ÎACµÄÑÓ³¤ÏßÉÏ£¬ÓɢڿɵÃAP=4+2t£¬ÓÉPA=$\frac{5}{6}$dµÃ4+2t=$\frac{5}{6}$¡Á4t£¬![]()
½âµÃ£ºt=3£®
¡ÏAPB=30¡ã+¡ÏOEB£¬
ÀíÓÉÊÇ£ºBH=3£¬DH=5$\sqrt{3}$£¬PB2=9+75=84£¬
AP=10£¬PC=6£¬BC=4$\sqrt{3}$£¬
ÉèEM=$\sqrt{3}$x£¬BM=3x£¬£¨$\sqrt{3}$x£©2+£¨3x-6£©2=84£¬½âµÃ£ºx=4£¬
¡àEM=4$\sqrt{3}$£¬OM=12-6=6£¬
ÔÚ¡÷EMOºÍ¡÷BCPÖУ¬
$\left\{\begin{array}{l}{EM=BC}\\{¡ÏEMO=¡ÏPCB}\\{OM=PC}\end{array}\right.$£¬
¡à¡÷EMO¡Õ¡÷BCP£¬
¡à¡ÏMOE=¡ÏCPB=¡ÏOBE+¡ÏOEB£¬
¡à¡ÏAPB=30¡ã+¡ÏOEB£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÕýÈ·Ö¤Ã÷¡÷EMO¡Õ¡÷BCPÊǹؼü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com