精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点F,C是⊙O上两点,且连接AC,AF,过点CCDAFAF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;

(2)CD=2求⊙O的半径.

【答案】 (2)4

【解析】

试题(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD⊙O的切线;

2)连结BC,由AB为直径得∠ACB=90°,由==,∠BOC=60°,则∠BAC=30°,所以

∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30°的直角三角形三边的关系得BC=AC=4AB=2BC=8,所以⊙O的半径为4

试题解析:(1)证明:连结OC,如图,

=

∴∠FAC=∠BAC

∵OA=OC

∴∠OAC=∠OCA

∴∠FAC=∠OCA

∴OC∥AF

∵CD⊥AF

∴OC⊥CD

∴CD⊙O的切线

2)解:连结BC,如图

∵AB为直径

∴∠ACB=90°

==

∴∠BOC=×180°=60°

∴∠BAC=30°

∴∠DAC=30°

Rt△ADC中,CD=2

∴AC=2CD=4

Rt△ACB中,BC=AC=×4=4

∴AB=2BC=8

∴⊙O的半径为4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BABC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线于⊙O的切线AF交于点F

1)求证:∠ABC2CAF

2)若AC2CEEB14,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.

(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;

(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,平行四边形ABCD中,AE:EB=1:2.

(1)求AE:DC的值.

(2)△AEF△CDF相似吗?若相似,请说明理由,并求出相似比.

(3)如果SAEF=6cm2,求SCDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4BC=8,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,正方形ABCD中,以CD为边作等边三角形CDE,求∠AED的度数.(画出相应的图形并解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.

(1)求购进 A、B 两种树苗的单价;

(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是等边三角形,点是直线上一点,以为一边在的右侧作等边

1)如图①,点在线段上移动时,直接写出的大小关系;

2)如图②,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).

(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出△A1B1C1(△ABC与△A1B1C1在位似中心O点的两侧,ABC的对应点分别是A1B1C1).

(2)利用方格纸标出△A1B1C1外接圆的圆心PP点坐标是  ,⊙P的半径=  .(保留根号)

查看答案和解析>>

同步练习册答案