分析 直接利用零指数幂的性质得出2a-b=0,或负整数指数幂的底数为0,进而得出关于a,b方程组,求出a、b即可代入得出答案即可.
解答 解:∵式子(2a-b)0+4a-2无意义,
∴2a-b=0,或a=0,
当2a-b=0时,则$\left\{\begin{array}{l}{2a-b=0}\\{2a+b=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$,(2a-b)2-2(a-b)•(2a+b)+(2a+b)2=6;
当a=0时,2a+b=2,解得:b=2,(2a-b)2-2(a-b)•(2a+b)+(2a+b)2=4+8+4=16.
点评 此题主要考查了零指数幂的性质,负整数指数幂的性质以及二元一次方程组的解法,正确解二元一次方程组是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | 37 | B. | 40 | C. | 41 | D. | 42 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com