精英家教网 > 初中数学 > 题目详情

【题目】在一次数学课上,王老师在黑板上画出一幅图,并写下了四个等式:

1)上述四个条件中,由哪两个条件可以判定是等腰三角形?用序号写出所有成立的情形.

2)请选择(1)中的一种情形,写出证明过程.

【答案】1)①③、①④、②③、②④;(2)选择①③,证明见解析

【解析】

1)只要能证明△ABE≌△DCE的条件都可以,所以可以根据全等三角形的判定方法来写出答案;

2)选择一种证明△ABE≌△DCE,可得到AEDE,可证明△AED为等腰三角形.

1)①③、①④、②③、②④都可以证明△ABE≌△DCE,可得到AEDE,可判定△AED为等腰三角形;

2)选择①③,证明如下:

在△ABE和△DCE中,

∴△ABE≌△DCEAAS),

AEDE

∴△AED为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料:一般地,个相同的因数相乘 ,记为.如,此时,叫做以为底的对数,记为(即).一般地,若,(),则叫做以为底的对数,记为(即).如,则叫做以为底的对数,记为(即).

1)计算以下各对数的值:__________,__________,__________.

2)观察(1)中三数之间满足怎样的关系式,之间又满足怎样的关系式;

3)由(2)的结果,你能归纳出一个一般性的结论吗?__________.(

4)根据幂的运算法则:以及对数的含义证明上述结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】苏州太湖养殖场计划养殖蟹和贝类产品,这两个品种的种苗的总投放量只有50吨,根据经验测算,这两个品种的种苗每投放一吨的先期投资,养殖期间的投资以及产值如下表(单位:万元/吨)

品种

先期投资

养殖期间投资

产值

贝类产品

0.9

0.3

0.33

蟹产品

0.4

1

2

养殖场受经济条件的影响,先期投资不超过36万元,养殖期间的投资不超过29万元,设贝类的种苗投放量为x吨,

1)求x的取值范围;

2)设这两个品种产出后的总产值为y(万元),试写出yx之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是三角形 内一点,射线PD//AC ,射线PB//AB .

1)当点D,E分别在AB,BC 上时,

①补全图1

②猜想 的数量关系,并证明;,

2)当点都在线段上时,请先画出图形,想一想你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是 ( )

A. RtABC中,若tanA,则a4b3

B. RtABC中,∠C90°,则tanAtanB1

C. RtABC 中,∠C90°,若a3b4,则tanA

D. tan75°tan(45°30°)tan45°tan30°1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与坐标轴分别交于A﹣2,0,B0,1两点,与反比例函数的图象在第一象限交于点C4,n,求一次函数和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(BFC在一条直线上).

(1)求办公楼AB的高度;

(2)若要在AE之间挂一些彩旗,请你求出AE之间的距离.

(参考数据:sin22°cos22°tan22°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根.

1)求m的取值范围;

2)若m为负整数,求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+3x+4的图象如图:(直接写答案)

(1)方程﹣x2+3x+4=0的解是   

(2)不等式﹣x2+3x+4>0的解集是   

(3)不等式﹣x2+3x+4<0的解集是   

查看答案和解析>>

同步练习册答案