精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形的边长为分别位于轴,轴上,点上,于点,函数的图像经过点,若,则的值为(

A. B. C. D.

【答案】C

【解析】

根据正方形的性质可得出OCAB,从而得出BPQ∽△OQC,再根据,即可得出点P的坐标,利用待定系数法求出直线OBCP的解析式,联立两个解析式求出交点坐标后再由反比例函数图象上点的坐标特征即可得出结论.

∵四边形OABC为正方形,

OCAB

BPQOQC

∵正方形OABC的边长为6

∴点C(0,6),B(6,6),P(6,3)

利用待定系数法可求出:

直线OB的解析式为y=x,直线CP的解析式为

联立OBCP的解析式得:

解得:

Q(4,4).

∵函数的图象经过点Q

k=4×4=16.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB经过⊙O上的点C,且OA=OBCA=CB.

(1)求证:直线AB是⊙O的切线;

(2)若∠A=30°AC=6,求⊙O的周长;

(3)(2)的条件下,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是菱形ABCD的对角线.

1)请用直尺和圆规作AB的垂直平分线EF,垂足为点E,交AD于点F;(不要求写作法,保留作图痕迹)

2)在(1)的条件下,连接BF,若∠CBD=75°,求∠DBF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线MN是线段BC的垂直平分线,垂足为OP为射线OM上的一点,连接BPPC.将线段PB绕点P逆时针旋转,得到线段PQPQPC不重合),旋转角为α0°<α180°)直线CQMN与点D

1)如图1,当α30°,且点P与点O重合时,∠CDM的度数是   

2)如图2,且点P与点O不重合.

①当α120°时,求∠CDM的度数;

②用含α的代数式表示∠CDM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】E-learning即为在线学习,是一种新型的学习方式.某网站提供了AB两种在线学习的收费方式.A种:在线学习10小时(包括10小时)以内,收取费用5元,超过10小时时,在收取5元的基础上,超过部分每小时收费0.6元(不足1小时按1小时计);B种:每月的收费金额(元)与在线学习时间是(时)之间的函数关系如图所示.

1)按照B种方式收费,当时,求关于的函数关系式.

2)如果小明三月份在这个网站在线学习,他按照A种方式支付了20元,那么在线学习的时间最多是多少小时?如果该月他按照B 种方式付费,那么他需要多付多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鲜丰水果店计划用/盒的进价购进一款水果礼盒以备销售.

据调查,当该种水果礼盒的售价为/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?

在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴交于点AB30),与y轴交于点C03).

1)求抛物线的解析式;

2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

3E是抛物线对称轴上一点,F是抛物线上一点,是否存在以ABEF为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长APCDF点,

1)求证:四边形AECF为平行四边形;

2)如果PA=PC,联结BP,求证:△APBEPC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙OBC是⊙O的直径,弦AFBC于点E,延长BC到点D,连接OAAD,使得∠FAC=AOD,∠D=BAF

(1)求证:AD是⊙O的切线;

(2)若⊙O的半径为5CE=2,求EF的长.

查看答案和解析>>

同步练习册答案