精英家教网 > 初中数学 > 题目详情

【题目】一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,将掷第一次后朝上一面的点数记为x,掷第二次后朝上一面的点数记为y.

(1)求点(x,y)在直线y=2x上的概率;

(2)求点(x,y)在直线y=-2x+7上的概率.

【答案】(1) (2)

【解析】列表列举出所有情况;

(1)根据列表看落在直线y=2x上的情况占总情况的多少即可;

(2)根据列表看落在直线y=-2x+7上的情况占总情况的多少即可.

 y

x 

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

5

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

6

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(1)由列表法可以得出点(x,y)共有36种等可能的结果,

其中点(1,2),(2,4),(3,6)在直线y=2x上,

∴点(x,y)在直线y=2x上的概率是

(2)根据题意,得1≤-2x+7≤6,解得≤x≤3.

x为整数,∴x1,2,3,

要使点(x,y)在直线y=-2x+7上,

则对应的y值为5,3,1,

∴满足条件的点(x,y)(1,5),(2,3),(3,1),

由列表可知点(x,y)共有36种等可能结果,

∴点(x,y)在直线y=-2x+7上的概率是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.

(第22题)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.

(部分参考数据:322=1024,522=2704,482=2304)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小亮参加中华诗词大赛,还剩最后两题,如果都答对,就可顺利通关.其中第一道单选题有4个选项,第二道单选题有3个选项.小亮这两道题都不会,不过还有一个求助没有使用(使用求助可以让主持人去掉其中一题的一个错误选项).

1)如果小亮第一题使用求助,那么他答对第一道题的概率是__

2)他的亲友团建议:最后一题使用求助,从提高通关的可能性的角度看,你同意亲友团的观点吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(4)个图形需要的木棍数量为__________,第(6)个图形需要的木棍数量为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一口袋中装有四根长度分别为1 cm,3 cm,4 cm,5 cm的细木棒,小明手中有一根长度为3 cm的细木棒,现随机从口袋中取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:

(1)求这三根细木棒能构成三角形的概率;

(2)求这三根细木棒能构成直角三角形的概率;

(3)求这三根细木棒能构成等腰三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某检修站,甲小组乘坐一辆汽车,沿东西方向的公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:): +8,- 2 -13 -1 +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7 +9,- 2 +8,- 6

1)分别计算收工时,甲,乙两组各在地的哪一边,分别距离地多远?

2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABP中,CBP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;

(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AGAB=12,求AC的长.

查看答案和解析>>

同步练习册答案