【题目】已知:如图,∠A=∠ADE,∠C=∠E.
(1)若∠EDC=3∠C,求∠C的度数.
(2)求证:BE∥CD.
【答案】
(1)解:∵∠A=∠ADE,
∴AC∥DE,
∴∠EDC+∠C=180°,
又∵∠EDC=3∠C,
∴4∠C=180°,即∠C=45°;
(2)证明:∵AC∥DE,
∴∠E=∠ABE,
又∵∠C=∠E,
∴∠C=∠ABE,
∴BE∥CD.
【解析】(1)首先依据内错角线段两直线平行可证明AC∥DE,然后根据两直线平行,同旁内角互补,即可得出∠C+∠EDC=180°,结合条件∠EDC=3∠C可求得∠C的度数;
(2)根据AC∥DE,∠C=∠E,通过等量代换可得出∠C=∠ABE,最后依据平行线的判定定理进行证明即可.
【考点精析】通过灵活运用平行线的判定,掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图所示,小方格边长为1个单位,
(1)请写出△ABC各点的坐标.
(2)求出S△ABC .
(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )
A.6.5
B.6
C.5.5
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中的错误的是( ).
A、一组邻边相等的矩形是正方形
B、一组邻边相等的平行四边形是菱形
C、一组对边相等且有一个角是直角的四边形是矩形
D、一组对边平行且相等的四边形是平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.
(1)求高铁列车的平均时速;
(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺规作图,在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹);
(2)(4分)求∠BDC的度数;
(3)(4分)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即,根据定义,利用图形求cot22.5°的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com