精英家教网 > 初中数学 > 题目详情
17.已知反比例函数y=$\frac{5}{x}$,当1<x≤4时,y的最大整数值是(  )
A.4B.3C.2D.1

分析 根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最大整数,本题得解.

解答 解:在反比例函数y=$\frac{5}{x}$中k=5>0,
∴该反比例函数在x>0内,y随x的增大而减小,
当x=1时,y=5;当x=4时,y=1.25.
∴当1<x≤4时,1.25≤y<5.
∴y的最大整数值是4.
故选A.

点评 本题考查了反比例函数的性质,属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.盐城,一个让人打开心扉的地方,2016年盐城的空气质量指数优良率持续在全国前列,下列数据是2016年每一周的空气质量指数:53,41,27,28,32,28,40,则这组数据的中位数与众数分别是(  )
A.32,28B.28,32C.28,28D.30,28

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a-b|,线段AB的中点表示的数为$\frac{a+b}{2}$.
【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t秒(t>0).
【综合运用】
(1)填空:
①A、B两点间的距离AB=10,线段AB的中点表示的数为3;
②用含t的代数式表示:t秒后,点P表示的数为-2+3t;点Q表示的数为8-2t.
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=$\frac{1}{2}$AB;
(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若x<-3,则$\sqrt{(x+3)^{2}}$=-x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)b=2;
(2)关于x、y的方程组$\left\{\begin{array}{l}{y=x+1}\\{y=mx+n}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
(3)直线l3:y=nx+m是否经过点P?是(填“是”或“不是”)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.观察下面的几个算式,你发现了什么规律?
①16×14=224=1×(1+1)×100+6×4=224
②23×27=621=2×(2+1)×100+3×7=621
③32×38=1216=3×(3+1)×100+2×8=1216

(1)上面的规律,迅速写出答案.
64×66=4224
73×77=5621 
81×89=7209
(2)设两个两位数分别是(10n+a)、(10n+b),其中a+b=10),请你利用所学知识证明上面所发现的规律.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.△ABC是等腰直角三角形,AC=BC,∠ACB=90°.
(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8,求CM的长度;
(2)如图2,直线l经过点C,AF⊥l于点F,BE⊥l于点E,点D是AB的中点,连接DE,求证:AF=BE+$\sqrt{2}$DE;
(3)将图2中的直线l旋转到△ABC的外部,其他条件不变,请直接写出AF、BE、DE的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知$\sqrt{2x-1}$+$\sqrt{1-2x}$+y=4,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,以C为圆心,CF的长为半径作圆,D是⊙C上一动点,E为BD的中点,当AE最大时,BD的长为(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{3}$+1D.6

查看答案和解析>>

同步练习册答案