【题目】如图(1),已知正方形ABCD中,点E、F分别在边BC、CD上,BE=DF,AE、AF分别交BD于点G、H.
(1)求证:BG=DH;
(2)连接FE,如图(2),当EF=BG时.
①求证:ADAH=AFDF;
②直接写出的比值.
【答案】(1)见解析; (2) ①见解析; ②
【解析】
(1)根据正方形性质证△ABE≌△ADF(SAS),得∠BAE=∠DAF,再证△ABG≌△ADH(ASA)即可;
(2)①连接GF,证明四边形EBGF是平行四边形,利用BE∥GF∥AD,根据平行线分线段成比例性质可得:,,故.
②由①可得,,设CF=k,DF=a,根据勾股定理和 平行线分线段成比例性质得,得到,再代入化简可得.
证明:(1)∵四边形 ABCD为正方形
∴AB=AD,∠ABC=∠ADC
∵BE=DF
∴△ABE≌△ADF(SAS)
∴∠BAE=∠DAF
∵AB=AD
∴∠ABD=∠ADB
∴△ABG≌△ADH(ASA)
∴BG=DH
(2)①连接GF.
∵BC=DC,BE=DF,
∴CE=CF
∵∠C=90°
∴∠DBC=∠FEC=45°
∴EF∥BD
∵EF=BG
∴四边形EBGF是平行四边形
∴BE∥GF∥AD
∵AD=CD
∴
∵EF∥BD
∴
∴,即.
②由(2)可得
∴
∴
设CF=k,DF=a
则EF=,DG=,
∴DH= EF=,
∴GH=-
∴由可得
整理得
解得
∴
=
科目:初中数学 来源: 题型:
【题目】在中,为直径,弦,垂足为,且为的中点,连接.
(1)如图1,求的度数.
(2)如图2,连接并延长,交圆于点,连接,求证:
(3)在(2)问的条件下,为弧上的一点,连接,、分别为、上的一点,连接,连接交于点,连接、,若,,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,点D是上的一点,且,连接AD交BC于点F,过点A作⊙O的切线AE交BC的延长线于点E.
(1)求证:CF=CE;
(2)若AD=8,AC=5,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.
(1)求证:AF⊥EF;(2)若cosA=,BE=1,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=8,点E为AD上一点,将△ABE沿BE折叠得到△FBE,点G为CD上一点,将△DEG沿EG折叠得到△HEG,且E、F、H三点共线,当△CGH为直角三角形时,AE的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,点,分别落在点,处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下去……,若点,,则点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象交轴于点,点,交轴于点
(1)求二次函数的解析式;
(2)连接,在直线上方的抛物线上有一点,过点作轴的平行线,交直线于点,设点的横坐标为,线段的长为,求关于的函数关系式;
(3)若点在轴上,是否存在点,使以、、为顶点的三角形是等腰三角形,若存在,直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,是的中点,动点在线段上,连接并延长交射线于点,过点作的垂线交于点,设的中点为,连接,.
(1)当点不与点重合时,求证:;
(2)①当点与点或点重合时,是等腰直角三角形,当点与点或点不重合时,请判定的形状;
②求点移动的最长距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com