精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).

(1)请画出A1B1C1,使A1B1C1ABC关于x轴对称;

(2)ABC绕点O逆时针旋转90°,画出旋转后得到的A2B2C2,并直接写出点B2,C2的坐标;

(3)若点P(a,b)ABC内任意一点,试写出将ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.

【答案】(1)见解析;(2) B2 (-2,4),C2 (-5,3);(3) (-b,a).

【解析】

(1)根据网格特点,找出点关于轴的对称点的位置,然后顺次连接即可;

(2)分别找出绕点逆时针旋转的对应点的位置,然后顺次连接即可;

(3)根据各点坐标的变化即可得出结论.

解:(1)如图,△A1B1C1即为所求;

(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);

(3)点P2的坐标是(-b,a).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,AHBC,垂足为H,且AH=6 cm,点DAB的中点,点PAH上一动点,则DPBP和的最小值是__________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EBC的中点,ABBCDCBCAE平分BAD,下列结论:①AED=90°ADE=CDEDE=BEAD=AB+CD,四个结论中成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,ABC的顶点均在格点上.

(1)画出ABC关于原点成中心对称的A′B′C′,并直接写出A′B′C′各顶点的坐标;

(2)连接BC′,B′C,求四边形BCB′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,BECF分别是ACAB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接ADAG

1)求证:AD=AG

2ADAG的位置关系如何,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点P(xy),我们把点P′(y+1x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1A2A3,…,An,….若点A1的坐标为(ab),则点A2020的坐标为(

A.(ab)B.(b+1a+1)C.(a,﹣b+2)D.(b1,﹣a+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;

(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点CCF平行于BAPQ于点F,连接AF

(1)求证:AED≌△CFD

(2)求证:四边形AECF是菱形.

(3)若AD=3,AE=5,则菱形AECF的面积是多少?

查看答案和解析>>

同步练习册答案