精英家教网 > 初中数学 > 题目详情

【题目】小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).

【答案】20.0米.

【解析】试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.

解:过点DDG⊥AB,分别交ABEF于点GH

∵AB∥CDDG⊥ABAB⊥AC

四边形ACDG是矩形,

∴EH=AG=CD=1.2DH=CE=0.8DG=CA=30

∵EF∥AB

由题意,知FH=EF﹣EH=1.7﹣1.2=0.5

,解得,BG=18.75

∴AB=BG+AG=18.75+1.2=19.95≈20.0

楼高AB约为20.0米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)填空:四边形ABCD内(边界点除外)一共有  个整点(即横坐标和纵坐标都是整数的点);

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是(  )

A. 此抛物线的解析式是y=﹣x2+3.5

B. 篮圈中心的坐标是(4,3.05)

C. 此抛物线的顶点坐标是(3.5,0)

D. 篮球出手时离地面的高度是2m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①是某公共汽车线路收支差额y(票价总收入减去运营成本)与乘客量x的函数图象,目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会,乘客代表认为:公交公司应降低运营成本,实现扭亏,公交公司认为:运营成本难以下降,提高票价才能扭亏根据这两种意见,把图①分别改画成图②和图③.则下列判断不合理的是(  )

A. 图①中点A的实际意义是公交公司运营后亏损1万元

B. 图①中点B的实际意义是乘客量为1.5万时公交公司收支平衡

C. 图②能反映公交公司意见

D. 图③能反映乘客意见

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD是菱形,边BCx轴上,点A(0,4),点B(3,0),双曲线y=与直线BD交于点D、点E.

(1)求k的值;

(2)求直线BD的解析式;

(3)求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙OBC于点D,交AC于点F,过点CCE∥AB,与过点A的切线相交于点E,连接AD.

(1)求证:AD=AE;

(2)若AB=6,AC=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程ax+b=0(a≠0)的解为x=-2,(1,3)是抛物线y=ax2+bx+c(a≠0)上的一个点,则下列四个点中一定在该抛物线上的是( )

A. (2,3) B. (0,3)

C. (-1,3) D. (-3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为扶持大学生自主创业,市政府提供了80万元的无息贷款,用于某大学生开办公司,生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该电子产品的生产成本为每件40,公司每月要支付其他费用15万元.该产品每月的销售量y(万件)与销售单价x()满足如图所示的一次函数关系:

(1)求每月销售量y(万件)与销售单价x()之间的函数关系式.

(2)当销售单价定为多少元时,该公司每月销售利润最大.

(3)若相关部门要求该电子产品的销售单价不得低于其生产成本,且销售每件产品的利润率不能超过25%,则该公司最早用几个月可以还清无息贷款?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).

(1)请画出A1B1C1,使A1B1C1ABC关于x轴对称;

(2)ABC绕点O逆时针旋转90°,画出旋转后得到的A2B2C2,并直接写出点B2,C2的坐标;

(3)若点P(a,b)ABC内任意一点,试写出将ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.

查看答案和解析>>

同步练习册答案