精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A( ),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.

【答案】
(1)解:设直线AD的解析式为y=kx+b,

将A( ),D(0,1)代入得:

解得:

故直线AD的解析式为:y= x+1;


(2)∵直线AD与x轴的交点为(﹣2,0),

∴OB=2,

∵点D的坐标为(0,1),

∴OD=1,

∵y=﹣x+3与x轴交于点C(3,0),

∴OC=3,

∴BC=5

∵△BOD与△BEC相似,

= =

∴BE=2 ,CE= ,或CE=

∵BCEF=BECE,

∴EF=2,CF= =1,

∴E(2,2),或(3, ).


【解析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A( ),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到 ,代入数据即可得到结论.
【考点精析】本题主要考查了确定一次函数的表达式和相似三角形的性质的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;对应角相等,对应边成比例的两个三角形叫做相似三角形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果BAC=90,则BCE 度;

(2)设BAC=BCE=

如图2,当点D在线段BC上移动,则之间有怎样的数量关系?请说明理由;

当点D在直线BC上移动,则之间有怎样的数量关系?请直接写出你的结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.

(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=SOPB , BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.
则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C为△ABD的外接圆上的一动点(点C不在 上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2 , AM2 , BM2三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.

(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADBC相交于点OOA=ODOB=OC.下列结论正确的是(  )

A. AOB≌△DOC B. ABO≌△DOC C. A=C D. B=D

查看答案和解析>>

同步练习册答案