【题目】如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.
【答案】灯杆AB的长度为2.8米.
【解析】
过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AFGF=1.4,再求得∠ABG=∠ABC∠CBG=30°可得AB=2AG=2.8.
过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.
由题意得∠ADE=α,∠E=45°.
设AF=x.
∵∠E=45°,
∴EF=AF=x.
在Rt△ADF中,∵tan∠ADF=,
∴DF===,
∵DE=13.3,
∴x+=13.3.
∴x=11.4.
∴AG=AF﹣GF=11.4﹣10=1.4.
∵∠ABC=120°,
∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.
∴AB=2AG=2.8,
答:灯杆AB的长度为2.8米.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与x轴交于A,B两点在B的左侧,与y轴交于C,且,
求c的值;
是抛物线上一动点,过P点作直线L交y轴于,且直线L和抛物线只有唯一公共点,求的值;
如图2,E为直线上的一动点,CE交抛物线于D,轴交抛物线于F,求证:直线FD经过y轴上一定点,并求定点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如图:
未来天内,前天每天的价格(元/件)与时间(天)的函数关系式为,且为整数),后天每天的价格元/件(,且为整数).下面我们来研究销售这种商品的有关问题:
(1)认真分析图中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的(件)与(天)之间的关系式;
(2)请预测未来天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前天中,该公司决定每销售一件商品就捐赠元利润给希望工程.公司通过销售记录发现,前天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.
(1)若该二次函数图象的对称轴为直线x=4时:
①求二次函数的表达式;
②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;
(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.
(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是 ;
(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;
(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和爸爸周末步行去游泳馆游泳,爸爸先出发了一段时间后小明才出发,途中小明在离家米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.爸爸、小明离家的距离(单位:米),单位:米)与小明所走时间(单位:分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:
分别求出爸爸离家的距离和小明到达报亭前离家的距离与时间之间的函数关系式;
求小明在报亭休息了多长时间遇到姗姗来迟的爸爸?
若游泳馆离小明家米,请你通过计算说明谁先到达游泳馆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】双曲线(k为常数,且)与直线交于两点.
(1)求k与b的值;
(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点M在BA的延长线上.
(1)按下列要求作图,并在图中标明相应的字母(尺规作图,保留作图痕迹,不要求写作法和证明);
①作∠MAC的平分线AN;
②在AN上截取AD=BC,连结CD.
(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com