精英家教网 > 初中数学 > 题目详情

【题目】取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′.

①当α为多少度时,ABDC?

②当旋转到图③所示位置时,α为多少度?

③连接BD,当0°<α≤45°时,探求∠DBC′+CAC′+BDC值的大小变化情况,并给出你的证明.

【答案】(1)当α=15°时,AB∥DC(2)α=45°;(3)详见解析.

【解析】

1)若AB∥DC,则∠BAC=∠C=30°,得到α=∠BAC′-∠BAC=45°-30°=15°;
(2)当旋转到图③所示位置时,α=45°,
(3)连接CC′,BD,BO,在BDOOCC′中,利用三角形内角和定理得到∠BDO+∠DBO=∠OCC′+∠OC′C,即可求得∠DBC′+∠CAC′+∠BDC=105°,即得到∠DBC′+∠CAC′+∠BDC值的大小不变.

解:(1)当α=15°时,AB∥DC.

(2)当旋转到图③所示位置时,α=45°.

(3)当0°<α45°时,∠DBC′+∠CAC′+∠BDC值的大小不变.

证明:连接CC′,在BDOOCC′中,对顶角∠BOD=COC′,

∴∠1+∠2=∠3+∠4.

∴∠DBC′+∠CAC′+∠BDC

=∠2+∠α+∠1

180°―ACD―AC′B

180°―45°―30°

105°

∴当0°<α≤45°时,∠DBC′+CAC′+BDC值的大小不变

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.

(1)该班男生和女生各有多少人?

(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区超市一段时间每天订购面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.

(1)若该超市每天订购面包80个,今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,请用含x的式子表示y;

(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分布直方图(每组含最小值,不含最大值)和扇形统计图,如图所示.请根据两图提供的信息计算在m天内日销售利润少于32元的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°

求证:OD是∠AOC的平分线;

证明:如图,因为OE是∠BOC的平分线,

所以∠BOE=∠COE.(  )

因为∠DOE=90°

所以∠DOC+∠  =90°

且∠DOA+∠BOE=180°﹣∠DOE=  °.

所以∠DOC+∠  =∠DOA+∠BOE.

所以∠  =∠  .

所以OD是∠AOC的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】潜山市某村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说( 

A. 1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少

B. 1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平

C. 1月至3月每月生产总量逐月增加,4、5两月均停止生产

D. 1月至3月每月生产总量不变,4、5两月均停止生产

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2 的正方形ABCD中,点E是CD边的中点,延长BC至点F,使CF=CE,连接BE,DF.将△BEC绕点C按顺时针方向旋转.当点E恰好落在DF上的点H处时,连接AG、DG、BG,则AG的长是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为∠BAC的外角平分线上一点并且满足BD=CDDBC=DCB,过DDEACEDFABBA的延长线于F,则下列结论:

①△CDEBDFCE=AB+AE③∠BDC=BAC④∠DAF=CBD.

其中正确的结论有(.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:

∵∠5=∠CDA(已知),∴________________(内错角相等,两直线平行).

∵∠5=∠ABC(已知),∴________________(同位角相等,两直线平行).

∵∠2=∠3(已知),∴________________(内错角相等,两直线平行).

∵∠BAD+∠CDA=180°(已知),

________________(同旁内角互补,两直线平行).

∵∠5=∠CDA(已知),

又∠5与∠BCD互补,

∠CDA与________互补,

∴∠BCD=∠6(等角的补角相等),

________________(同位角相等,两直线平行).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,ABC=2C,BE平分∠ABCACE,ADBED,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=C;BC=4AD,其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案