分析 ①根据直线x=-1是对称轴,确定b-2a的值;
②根据x=-2时,y>0确定4a-2b+c的符号;
③根据x=-4时,y=0,比较a-b+c与-9a的大小;
④根据抛物线的对称性,得到x-4与x=2时的函数值相等判断即可.
解答 解:①∵直线x=-1是对称轴,
∴-$\frac{b}{2a}$=-1,即b-2a=0,①正确;
②x=-2时,y>0,
∴4a-2b+c>0,②错误;
∵x=-4时,y=0,
∴16a-4b+c=0,又b=2a,
∴a-b+c=-9a,③正确;
④根据抛物线的对称性,得到x=-4与x=2时的函数值相等,
∴y1>0,y2<0,
∴y1>y2,④正确.
故答案为①③④.
点评 本题考查的是二次函数的图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3a+1}{4}$ | B. | $\frac{2-a}{5}$ | C. | $\frac{3a+1}{6}$ | D. | $\frac{5a-2}{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a-2(-b+c)=a-2b-2c | B. | a-2(-b+c)=a+2b-2c | C. | a+2(b-c)=a+2b-c | D. | a+2(b-c)=a+2b+2c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com