精英家教网 > 初中数学 > 题目详情
7.$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$是方程mx+y-1=0的一组解,则m的值是$-\frac{1}{3}$.

分析 根据方程的解满足方程,可得关于m的方程,根据解方程,可得答案.

解答 解:由题意,得
3m+2-1=0,
解得m=-$\frac{1}{3}$,
故答案为:-$\frac{1}{3}$.

点评 本题考查了二元一次方程的解,利用方程的解满足方程得处关于m的方程是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-$\frac{3}{8}$x-$\frac{39}{8}$与x轴及直线x=-5分别交于点C,E,点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2$\sqrt{73}$cm,4$\sqrt{13}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.用圆规、直尺作图,不写作法,但要保留作图痕迹.
如图,已知:△ABC中,∠C=90°
求作:矩形CDEF,使点D、E、F分别在边CB、BA、AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,∠CDH+∠EBG=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE与FC会平行吗?说明理由;
(2)AD与BC的位置关系如何?为什么?
(3)BC平分∠DBE吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.
(1)当t=16s时,以OB、OP为邻边的平行四边形是菱形;
(2)当点P在OB的垂直平分线上时,求t的值;
(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:
(1)求证:△APR,△BPQ,△CQR的面积相等;
(2)求△PQR面积的最小值;
(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知点O表示数轴的原点,点A、B分别表示实数$\frac{3}{2}$、$\sqrt{5}$,若a、b分别表示线段OA、AB的长,则a>b.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若关于x的不等式组$\left\{\begin{array}{l}{x≥a}\\{\frac{x-1}{2}-\frac{2x-1}{6}<1}\end{array}\right.$的解集中只含有3个整数解,则a的取值范围是(  )
A.-2<a≤-1B.-2≤a<-1C.5<a≤6D.5≤a<6

查看答案和解析>>

同步练习册答案