【题目】如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积;
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标.
【答案】(1)y=x2﹣x﹣4;(2)4;(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由详见解析.
【解析】试题分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式;(2)由解析式先求得点D、C坐标,再根据S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC,列式计算即可;(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、E对称,则AP=EP,AQ=EQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等的性质可用t表示E点坐标,又E在E函数上,所以代入即可求t,进而E可表示.
试题解析:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),
∴,
解得: ,
∴y=x2﹣x﹣4;
(2)过点D作DM⊥y轴于点M,
∵y=x2﹣x﹣4=(x﹣1)2﹣,
∴点D(1,﹣)、点C(0,﹣4),
则S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;
(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由如下
如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四边形AQEP为菱形,
∵FQ∥OC,
∴,
∴
∴AF=t,FQ=t
∴Q(3﹣t,﹣t),
∵EQ=AP=t,
∴E(3﹣t﹣t,﹣t),
∵E在二次函数y=x2﹣x﹣4上,
∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,
∴t=,或t=0(与A重合,舍去),
∴E(﹣,﹣).
科目:初中数学 来源: 题型:
【题目】已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物. 根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计,有几种租车方案?
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成.印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表.
总印数a(单位:千册) | 1≤a<5 | 5≤a<10 |
彩色(单位:元∕张) | 2.2 | 2.0 |
黑白(单位:元∕张) | 0.7 | 0.5 |
(1)印制这批纪念册的制版费为多少元.
(2)若印制A、B两种纪念册各2千册,则共需多少费用?
(3)如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】个不透明的口袋里装有分别标有汉字“美”、“丽”、“西”、“湖”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“西”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“西湖”的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“西湖”的概率为P2,请比较P1,P2的大小关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一组数据3,3,2,3,6,3,10,3,6,3,2:①众数是3;②众数与中位数的数值不等;③中位数与平均数的数值相等;④平均数与众数的数值相等,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与x轴交于点B,与y轴交于点C,抛物线
与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)点M是上述抛物线上一点,如果△ABM和△ABC相似,求点M的坐标;
(3)连接AC,求顶点D、E、F、G在△ABC各边上的矩形DEFC面积最大时,写出该矩形在AB边上的顶点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com