精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.

(1)求抛物线的函数表达式,并求出点D的坐标;
(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?
(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.

【答案】
(1)

解:将点A(﹣1,0)、C(2,3)代入y=﹣x2+bx+c,得:

解得:

∴抛物线的解析式为y=﹣x2+2x+3,

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴抛物线的对称轴为直线x=1,

设直线AC的函数解析式为y=kx+b,

将A(﹣1,0)、C(2,3)代入y=kx+b,得:

解得:

∴直线AC的函数解析式为y=x+1,

又∵点D是直线AC与抛物线的对称轴的交点,

∴xD=1,yD=1+1=2,

∴点D的坐标为(1,2)


(2)

解:四边形DMD′N是正方形,理由如下:

∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,

∴令y=0,得﹣x2+2x+3=0,

解得:x1=﹣1,x2=3,

∴A(﹣1,0)、B(3,0),

∴AD= =2 ,BD= =2 ,AB=1+3=4,

而AD2+BD2=AB2

∴△ABD是等腰直角三角形,

∴∠DAB=∠DBA=45°,∠ADB=90°,

由翻折可知:D′M=DM、DN=ND′,

又∵DM=DN,

∴四边形MDND′为菱形,

∵∠MDN=90°,

∴四边形MDND′是正方形;

设DM=DN=t,当点D落在x轴上的点D′处时,

∵四边形MDND′为正方形,

∴∠D′NB=90°,

在Rt△D′NB中,D′N=t,BN=2 ﹣t,BD′=2,

∴t2+(2 ﹣t)2=22

∴t1=t2=

即:经过 s时,点D恰好落在x轴上的D′处


(3)

解:存在,

如图,

由(2)知△ABD为等腰直角三角形,

∵△PBD与△ABD相似,且不全等,

∴△PBD是以BD为斜边的等腰直角三角形,

∴点P的坐标为(1,0)或(2,3)


【解析】(1)先利用待定系数法求得抛物线和直线的解析式,从而得出对称轴与直线的交点;(2)由抛物线解析式求得点A、B坐标,结合点D坐标可知△ABD为等腰直角三角形,即∠DAB=∠DBA=45°、∠ADB=90°,由翻折性质得D′M=DM、DN=ND′,从而得出四边形MDND′为菱形,根据∠MDN=90°即可得四边形MDND′为正方形;设DM=DN=t,在Rt△D′NB中D′N=t、BN=2 ﹣t、BD′=2,根据勾股定理即可得出t的值;(3)由△ABD为等腰直角三角形及△PBD与△ABD相似且不全等,知△PBD是以BD为斜边的等腰直角三角形,结合图形即可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.
(1)求点P的坐标;
(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.

(1)求证:△ACD是等边三角形.
(2)连接OE,若DE=2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为(
A.2cm
B.2 cm
C.4cm
D.4 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣ (x<0)与y= (x>0)的图象上,则ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y= (k>0)刻画(如图所示).
(1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.

查看答案和解析>>

同步练习册答案