精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠ABC+D=180°AC平分∠BADCEABCFAD.试说明:

1CBE≌△CDF

2AB+DF=AF

【答案】1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=D,已知CEABCFAD,从而利用AAS即可判定CBE≌△CDF

2)已知EC=CFAC=AC,则根据HL判定ACE≌△ACFAE=AF最后证得AB+DF=AF即可.

试题解析:证明:(1AC平分∠BADCEABCFAD

CE=CF

∵∠ABC+D=180°ABC+EBC=180°

∴∠EBC=D

CBECDF中,

,

∴△CBE≌△CDF

2)在RtACERtACF中,

∴△ACE≌△ACF

AE=AF

AB+DF=AB+BE=AE=AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.

根据以上信息,解决下列问题:

1)条形统计图中“汤包”的人数是 ,扇形统计图中“蟹黄包”部分的圆心角为 °;

2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=15,BC=14,AC=13,求ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.

(1)ADBCD,设BD=x,用含x的代数式表示CD,则CD=________;

(2)请根据勾股定理,利用AD作为桥梁建立方程,并求出x的值;

(3)利用勾股定理求出AD的长,再计算三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:

朝上的点数

1

2

3

4

5

6

出现的次数

7

9

6

8

20

10

(1)计算“3点朝上”的频率和“5点朝上”的频率.

(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解分式方程:

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形网格中的每个小正方形的边长都是1每个小格的顶点叫做格点

1在图1中以格点为顶点画一个面积为5的等腰直角三角形;

2在图2中以格点为顶点画一个三角形使三角形三边长分别为2、

3如图3点A、B、C是小正方形的顶点ABC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于三个数a,b,c,M{a,b,c}表示这三个数的平均数min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A坐标为(6,0),点B在y轴的正半轴上,且=240.

(1)求点B坐标;

(2)若点P从B出发沿y轴负半轴方向运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;

(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰RtABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰RtADE,DAE=90°.连接CE.

(1)如图,求证:△ACE≌△ABD;

(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;

3)若AC=,当CD=1时,请求出DE的长.

查看答案和解析>>

同步练习册答案