分析 连接PC.由等腰直角三角形的性质可知∠ACB=45°,由轴对称的性质可知∠PCA=∠DCA=45°,PC=DC=3,从而得到△BCP为直角三角形,最后依据勾股定理求解即可.
解答 解:如图所示:连接PC.![]()
∵∠B=90°,AB=BC=4,
∴∠ACB=45°.
∵BC=4,BD=1,
∴DC=3.
∵点D与点P关于对称,
∴∠PCA=∠DCA=45°,PC=DC=3.
∴∠BCP=90°.
在Rt△BCP中,由勾股定理得:BP=$\sqrt{C{B}^{2}+P{C}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5.
故答案为:5.
点评 本题主要考查的是轴对称图形的性质、勾股定理的应用、等腰直角三角形的性质,证得三角形BCP为直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com