【题目】如图,AD、BE分别是△ABC的中线,AD、BE相交于点F.
(1)△ABC与△ABD的面积有怎样的数量关系?为什么?
(2)△BDF与△AEF的面积有怎样的数量关系?为什么?
【答案】
(1)解:△ABC的面积是△ABD的面积的2倍.
理由:∵AD是△ABC的中线,
∴BD=CD,
又∵点A为△ABC的顶点,△ACD与△ABD同底等高,
∴△ACD的面积=△ABD的面积,
∴△ABC的面积是△ABD的面积的2倍
(2)解:△BDF与△AEF的面积相等.
理由:∵BE是△ABC的中线,
∴△ABC的面积是△ABE的面积的2倍,
又∵△ABC的面积是△ABD的面积的2倍,
∴△ABE的面积=△ABD的面积,
即△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,
∴△BDF与△AEF的面积相等.
【解析】(1)根据三角形的中线将三角形分成面积相等的两部分进行判断;(2)根据三角形的中线将三角形分成面积相等的两部分,得出△ABE的面积=△ABD的面积,再根据△BDF的面积+△ABF的面积=△AEF的面积+△ABF的面积,得出结论即可.
【考点精析】本题主要考查了三角形的“三线”和三角形的面积的相关知识点,需要掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内;三角形的面积=1/2×底×高才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A.C的坐标分别为(10,0),(0,3),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验探究:
(1)动手操作:
①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;
②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=
(2)猜想证明:
如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;
(3)灵活应用:
请你直接利用以上结论,解决以下列问题:
①如图4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度数;
(4)②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9 ,
若∠BDC=120°,∠BF3C=64°,则∠A的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1∶2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.
(1)求k的值(用含a的代数式表示).
(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.
(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.
(1)求k和b的值;
(2)求△OAB的面积.
(3)请根据图象直接写出当x取何值时 ,一次函数值大于反比例函数值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在两个圆中有两条相等的弦,则下列说法正确的是( )
A.这两条弦所对的弦心距相等B.这两条弦所对的圆心角相等
C.这两条弦所对的弧相等D.这两条弦都被垂直于弦的半径平分
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com