【题目】小林准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段各围成一个正方形.
(1)若设其中的一个正方形边长为,则另一个正方形边长为_____;
(2)要使这两个正方形的面积之和等于,两段长分别是多少?
(3)若要使得这两个正方形的面积之和最小,两段长分别是多少?
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.
(1)求直线AB的解析式及△OAB面积;
(2)根据图象写出当y1<y2时,x的取值范围;
(3)若点P在x轴上,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P为定角∠AOB的平分线上的一个定点,点M,N分别在射线OA,OB上(都不与点O重合),且∠MPN与∠AOB互补.若∠MPN绕着点P转动,那么以下四个结论:①PM=PN恒成立;②MN的长不变;③OM+ON的值不变;④四边形PMON的面积不变.其中正确的为_____.(填番号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A和抛物线的另一个交点为C.
(1)求抛物线的解析式.
(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s与t的函数关系式.(不写t的取值范围)
(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B两点,则k的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.
(1)A点坐标为 ,B点坐标为 ;
(2)求证:点D在抛物线上;
(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com