【题目】如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.
(1)A点坐标为 ,B点坐标为 ;
(2)求证:点D在抛物线上;
(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.
【答案】(1)(2,0),(5,0);(2)见解析;(3)点M的坐标为:(,)或(,)或(,).
【解析】
(1)y=,令y=0,解得:x=2或5,即可求解;
(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;
(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.
解:(1)y=,令y=0,解得:x=2或5,
故A点坐标为:(2,0)、B点坐标为(5,0);
(2)连接CD、BD,
由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,
∵△ABC为等边三角形,
∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,
∵∠COD=60°,且OD=OC,则△OCD为等边三角形,
∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,
而∠ACB=60°=∠ACD+∠DCB,
∴∠OCA=∠DCB,
而CO=CD,CA=CB,
∴△OAC≌△DBC(SAS),
∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,
∴∠OBD=60°,则yD=﹣BDsin∠OBD=﹣2×=﹣,
故点D的坐标为(4,﹣),
当x=4时,y==﹣,
故点D在抛物线上;
(3)抛物线的对称轴为:x=,
设点M(,s),点N(m,n),
n=m2﹣m+5,
①当OD是平行四边形的边时,
当点N在对称轴右侧时,
点O向右平移4个单位,向下平移个单位得到D,
同样点M向右平移4个单位,向下平移个单位得到N,
即:+4=m,s﹣=n,而n=m2﹣m+5,
解得:s=
则点M(,);
当点N在对称轴左侧时,
同理可得:点M(,);
②当OD是平行四边形的对角线时,
则4=+m,﹣=n+s,而n=m2﹣m+5,
解得:s=,
则点M(,),
故点M的坐标为:(,)或(,)或(,).
科目:初中数学 来源: 题型:
【题目】小林准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段各围成一个正方形.
(1)若设其中的一个正方形边长为,则另一个正方形边长为_____;
(2)要使这两个正方形的面积之和等于,两段长分别是多少?
(3)若要使得这两个正方形的面积之和最小,两段长分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k=0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,
设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)
(1)填空:EF= .cm,GH= .cm;(用含x的代数式表示)
(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE//x轴交双曲线于点E,连接BE,则△BCE的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿AD方向向终点D匀速运动,速度为cm/s;同时,点Q从点D出发,沿DC方向向终点C匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s),解答下列问题:
(1)当t为何值时,△AOP是等腰三角形?
(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=x+m与这个新图象有四个交点时,m的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,AC=4,BC=3,O是AB上一点,且AO:OB=2:5,过点O作垂足为D,
(1)求点O到直线AC的距离OD的长;(图1)
(2)若P是边AC上的一个动点,作交线段BC于Q(不与B、C重合)(图2)
①求证:;
②设,,试求关于的函数解析式,并写出定义域;
③若与相似,求的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com