精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(l,1),点Bx轴正半轴上,点D在第三象限的双曲线y=上,过点CCE//x轴交双曲线于点E,连接BE,则△BCE的面积为________

【答案】7

【解析】

作辅助线,构建全等三角形:过DGHx轴,过AAGGH,过BBMHCM,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=x1,由DG=BM,列方程可得x的值,表示DE的坐标,根据三角形面积公式可得结论.

DGHx轴,过AAGGH,过BBMHCM

D(x,)

∵四边形ABCD是正方形,

AD=CD=BC,∠ADC=DCB=90°

易得AGDDHCCMB

AG=DH=x1

DG=BM

1=1x

x=2

D(2,3)CH=DG=BM=1=4

AG=DH=1x=1

∴点E的纵坐标为4

y=4时,x=

E(-,4)

EH=2=

CE=CHHE=4=

SCEB=CEBM=××4=7

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形

1)已知:如图1,四边形ABCD等对角四边形,∠AC,∠A75°,∠D85°,则∠C   

2)已知:在等对角四边形ABCD中,∠DAB60°,∠ABC90°AB4AD3.求对角线AC的长.

3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD等对角四边形,其中A(﹣20)、C20)、B(﹣1,﹣),点Dy轴上,抛物线yax2+bx+ca0)过点AD,且当﹣2≤x≤2时,函数yax2+bx+c取最大值为3,求二次项系数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标为(07),点B的坐标为(03),点C的坐标为(30).

1)在图中作出ABC的外接圆(保留必要的作图痕迹,不写作法),圆心坐标为 ______

2)若在x轴的正半轴上有一点D,且∠ADB=ACB,则点D的坐标为 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx轴交于AB两点,△ABC为等边三角形,∠COD60°,且ODOC

1A点坐标为   B点坐标为   

2)求证:点D在抛物线上;

3)点M在抛物线的对称轴上,点N在抛物线上,若以MNOD为顶点的四边形为平行四边形,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5,销售量相应减少20,设销售单价为x(x60)元,销售量为y.

(1)求出yx的函数关系式;

(2)当销售单价为多少元时,且销售额为14000?

(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,AFBC,垂足为D.

1)求证:∠BAE=CAD.

2)若⊙O的半径为4AC=5CD=2,求CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点Pxy),如果点Qxy)的纵坐标满足y,那么称点Q为点P关联点

1)请直接写出点(35)的关联点的坐标   

2)如果点P在函数yx2的图象上,其关联点Q与点P重合,求点P的坐标;

3)如果点Mmn)的关联点N在函数y2x2的图象上,当0≤m≤2时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为的正方形的对角线交于点,将正方形沿直线折叠,点落在对角线上的点处,折痕于点,则

A. B. C. D.

查看答案和解析>>

同步练习册答案