20£®ÔÚÖ±½Ç×ø±êϵÖУ¬·ÅÖÃÒ»¸öÈçͼ1ËùʾµÄRt¡÷OAB£¬¡ÏOAB=90¡ã£¬OB=2£¬¡ÏAOB=30¡ã£¬¶þ´Îº¯Êýy=ax2+bx-3aͼÏóµÄ¶¥µãΪB£¬ÇÒÓëxÖá½»ÓÚµãC£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ±í´ïʽ¼°µãCµÄ×ø±ê£»
£¨2£©Èçͼ2£¬µãDÊÇÏß¶ÎOBÉϵÄÒ»¸ö¶¯µã£¬¹ýµãD×÷Ö±ÏßDE¡ÍOB½»yÖáÕý°ëÖáÓÚµãE£¬½«¡÷AOBÔÚÖ±ÏßDEÏ·½µÄ²¿·ÖÑØDEÏòÉÏÕÛµþ£¬ÉèOD=t£¬ÕÛµþºóÓë¡÷AOBÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý±í´ïʽ£¬²¢Çó³öSµÄ×î´óÖµ£»
£¨3£©Èçͼ1£¬ÈôµãPÊÇyÖáÉϵ͝µã£¬ÔÚ¶þ´Îº¯ÊýµÄͼÏóÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃÒÔB¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³ö¶¥µãBµÄ×ø±ê£¬ÔËÓö¥µã×ø±ê¹«Ê½Çó³öa£¬bµÄÖµ¼´¿ÉµÄ½âÎöʽ£»
£¨2£©·ÖÈý¶ÎÌÖÂÛ£º0£¼t¡Ü1£¬1£¼t£¼$\frac{3}{2}$£¬$\frac{3}{2}$¡Üt£¼2£»
£¨3£©·Ö¢ÙBCÊÇÆ½ÐÐËıßÐεıßʱ£¬ÏÈÇó³öBCµÄ³¤¶È£¬ÔÙ¸ù¾ÝƽÐÐËıßÐεĶԱßÏàµÈÇó³öµãQµÄºá×ø±ê£¬È»ºóÀûÓÃÅ×ÎïÏß½âÎöʽ¼ÆËãÇó³ö×Ý×ø±ê£¬´Ó¶øµÃ½â£»¢ÚBCÊǶԽÇÏßʱ£¬¸ù¾ÝƽÐÐËıßÐεĶԽÇÏß»¥ÏàÆ½·ÖÇó³öµãQµÄºá×ø±ê£¬È»ºóÀûÓÃÅ×ÎïÏß½âÎöʽ¼ÆËãÇó³ö×Ý×ø±ê£¬´Ó¶øµÃ½â£®

½â´ð ½â£º£¨1£©¡ß¡ÏOAB=90¡ã£¬OB=2£¬¡ÏAOB=30¡ã£¬
¡àAB=1£¬OA=$\sqrt{3}$£¬
¡àB£¨1£¬$\sqrt{3}$£©£¬
¡à-$\frac{b}{2a}$=1£¬$\frac{4a¡Á3a-{b}^{2}}{4a}=\sqrt{3}$£¬
½âµÃ£ºa=-$\frac{\sqrt{3}}{4}$£¬b=$\frac{\sqrt{3}}{2}$£¬
¡ày=-$\frac{\sqrt{3}}{4}$x2+$\frac{\sqrt{3}}{2}$x+$\frac{3\sqrt{3}}{4}$£¬
Áîy=0£¬µÃ·½³Ì-$\frac{\sqrt{3}}{4}$x2+$\frac{\sqrt{3}}{2}$x+$\frac{3\sqrt{3}}{4}$=0£¬
½âµÃx=3»òx=-1
¡àC£¨3£¬0£©£»
£¨2£©ÉèÕÛµþºóµãOÂäÔÚµãF´¦£¬
µ±0£¼t¡Ü1ʱ£¬Öصþ²¿·ÖΪ¡÷DEF£¬Èçͼ1Ëùʾ
DE=$\frac{\sqrt{3}}{3}$t£¬
¡àS=$\frac{1}{2}$•OD•DE=$\frac{\sqrt{3}}{6}$t2£¬´ËʱSµÄ×î´óֵΪ$\frac{\sqrt{3}}{6}$£»
µ±1£¼t£¼$\frac{3}{2}$ʱ£¬Öصþ²¿·ÖΪËıßÐÎBDEG£¬Èçͼ2Ëùʾ£¬
¡àS=S¡÷DEF-S¡÷BGF
=$\frac{\sqrt{3}}{6}$t2-$\frac{1}{2}$•£¨2t-2£©•$\frac{\sqrt{3}}{2}$£¨2t-2£©
=-$\frac{5\sqrt{3}}{6}$t2+2$\sqrt{3}$t-$\sqrt{3}$
=-$\frac{5\sqrt{3}}{6}$£¨t-$\frac{6}{5}$£©2+$\frac{\sqrt{3}}{5}$
´ËʱSµÄ×î´óֵΪ$\frac{\sqrt{3}}{5}$£»
µ±$\frac{3}{2}$¡Üt£¼2ʱ£¬Öصþ²¿·ÖΪ¡÷BDG£¬Èçͼ3Ëùʾ£¬
¡àS=$\frac{1}{2}$£¨2-t£©•$\sqrt{3}$£¨2-t£©=$\frac{\sqrt{3}}{2}$£¨2-t£©2
´ËʱSµÄ×î´óֵΪ$\frac{\sqrt{3}}{8}$£¬
×ÛÉÏËùÊö£¬SµÄ×î´óֵΪ$\frac{\sqrt{3}}{5}$£»
£¨3£©´æÔÚ£¬
¡ßB£¨1£¬$\sqrt{3}$£©£¬C£¨3£¬0£©
¡àBC=$\sqrt{£¨3-1£©^{2}+£¨\sqrt{3}-0£©^{2}}$=$\sqrt{7}$£¬
Èçͼ4Ëùʾ£¬ÈôËıßÐÎBCPQΪƽÐÐËıßÐΣ¬ÔòBC¡ÎPQ£¬BC=PQ£¬
¡à¡÷BCM¡Õ¡÷PQN£¬
¡àQN=CM=2£¬
¡àQ£¨-2£¬-$\frac{5\sqrt{3}}{4}$£©£»     
Èçͼ5Ëùʾ£¬ÈôËıßÐÎBCQPΪƽÐÐËıßÐΣ¬ÔòBC¡ÎPQ£¬BC=PQ£¬
¡àQN=CM=2£¬
¡àQ£¨2£¬$\frac{3\sqrt{3}}{4}$£©£»
Èçͼ6Ëùʾ£¬ÈôËıßÐÎBQCPΪƽÐÐËıßÐΣ¬ÔòPB¡ÎCQ£¬PB=CQ£¬
¡àBM=CN=1£¬
¡àON=4£¬
¡àQN=-$\frac{5\sqrt{3}}{4}$
×ÛÉÏËùÊö£¬Q1£¨-2£¬-$\frac{5\sqrt{3}}{4}$£©£¬Q2£¨2£¬$\frac{3\sqrt{3}}{4}$£©£¬Q3£¨4£¬-$\frac{5\sqrt{3}}{4}$£©£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬Èý½ÇÐεÄÃæ»ýÇ󷨣¬Æ½ÐÐËıßÐζԱßÏàµÈ£¬¶Ô½ÇÏß»¥ÏàÆ½·ÖµÄÐÔÖÊ£¬·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÁâÐÎABCDµÄ¶Ô½ÇÏß³¤·Ö±ðΪ6ºÍ8£¬ÔòÁâÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®12B£®24C£®36D£®48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½ñÄêÊÇ¡°Ê®¶þÎ塱¼Æ»®µÄ¿ª¾ÖÖ®Ä꣬5ÔÂ16ÈÕ¹úÎñÔºÌÖÂÛͨ¹ý¡¶¹ú¼Ò»ù±¾¹«¹²·þÎñÌåϵ¡°Ê®¶þÎ塱¹æ»®¡·£®»áÒé¾ö¶¨£º±¾Äê¶È°²ÅÅ264ÒÚÔªµÄ²ÆÕþ²¹ÌùÓÃÓÚÍÆ¹ã·ûºÏ½ÚÄܱê×¼µÄ¼ÒÓõçÆ÷£¨°üÀ¨¿Õµ÷¡¢Æ½°åµçÊÓ¡¢Ï´Ò»úºÍÈÈË®Æ÷£©£¬ÆäÖÐÏ´Ò»ú¡¢Æ½°åµçÊӵIJ¹Ìù±ÈÈÈË®Æ÷²¹Ìù·Ö±ð¶à20%¡¢40%£¬¶øÈÈË®Æ÷µÄ²¹Ìù±È¿Õµ÷²¹ÌùÉÙ$\frac{1}{6}$£»Í¬Ê±½¨Ò飬ÒÔºóÁ½ÄêÓÃÓÚÍÆ¹ã·ûºÏ½ÚÄܱê×¼¼ÒÓõçÆ÷µÄ²ÆÕþ²¹ÌùÿÄêµÝÔöaÒÚÔª£¬¡°Ê®¶þÎ塱µÄ×îºóÁ½ÄêÓÃÓÚ´ËÏî²ÆÕþ²¹ÌùÿÄê°´ÕÕÒ»¶¨±ÈÀýµÝÔö£¬´Ó¶øÊ¹¡°Ê®¶þÎ塱ÆÚ¼ä²ÆÕþ²¹Ìù×ܶî±È¹æ»®µÚ¶þÄê²¹ÌùµÄ5.31±¶»¹¶à2.31aÒÚÔª£®
£¨1£©ÈôÈÈË®Æ÷µÄ²ÆÕþ²¹Ìù½ñÄê±È2011ÄêÔö³¤10%£¬Ôò2011ÄêÈÈË®Æ÷µÄ²ÆÕþ²¹ÌùΪ¶àÉÙÒÚÔª£¿
£¨2£©Çó¡°Ê®¶þÎ塱µÄ×îºóÁ½ÄêÓÃÓÚ´ËÏî²ÆÕþ²¹ÌùµÄÄêÆ½¾ùÔö³¤ÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÖ±Ïßm¡În£¬µãAÔÚmÉÏ£¬µãB¡¢C¡¢DÔÚnÉÏ£¬ÇÒAB=4cm£¬AC=5cm£¬AD=6cm£¬ÔòmÓënÖ®¼äµÄ¾àÀ루¡¡¡¡£©
A£®µÈÓÚ5cmB£®µÈÓÚ6cmC£®µÈÓÚ4cmD£®Ð¡ÓÚ»òµÈÓÚ4cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬EÊǾØÐÎABCD±ßADÉϵÄÒ»µã£¬ÇÒBE=ED£¬PÊǶԽÇÏßBDÉÏÈÎÒâÒ»µã£¬PF¡ÍBEÓÚF£¬PG¡ÍADÓëG£¬ÇëÄã²ÂÏëPF¡¢PG¡¢ABËüÃÇÖ®¼äÓÐʲô¹ØÏµ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ¡÷ABCÖУ¬CA=CB£¬CDΪAB±ßµÄÖÐÏߣ¬µãPÊÇÏß¶ÎACÉÏÈÎÒâÒ»µã£¨²»ÓëµãCÖØºÏ£©£¬¹ýµãP×÷PE½»CDÓÚµãE£¬Ê¹¡ÏCPE=$\frac{1}{2}$¡ÏCAB£¬¹ýµãC×÷CF¡ÍPE½»PEµÄÑÓ³¤ÏßÓÚµãF£¬½»ABÓÚµãG£®
£¨1£©Èç¹û¡ÏACB=90¡ã£¬
¢ÙÈçͼ1£¬µ±µãPÓëµãAÖØºÏʱ£¬ÒÀÌâÒⲹȫͼÐΣ¬²¢Ö¸³öÓë¡÷CDGÈ«µÈµÄÒ»¸öÈý½ÇÐΣ»
¢ÚÈçͼ2£¬µ±µãP²»ÓëµãAÖØºÏʱ£¬Çó$\frac{CF}{PE}$µÄÖµ£»
£¨2£©Èç¹û¡ÏCAB=a£¬Èçͼ3£¬ÇëÖ±½Óд³ö$\frac{CF}{PE}$µÄÖµ£®£¨Óú¬aµÄʽ×Ó±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬OΪб±ßABÉÏÒ»µã£¬ÒÔOΪԲÐÄ£¬OAΪ°ë¾¶×÷¡ÑO½»Ð±±ßÓÚÁíÒ»µãD£¬ÇÒAO=OD=DB£®

£¨1£©Èçͼ1£¬¡ÑOÓëÖ±½Ç±ßBCÏàÇÐÓÚEµã£¬Á¬½ÓAE£¬Çócos¡ÏCAEµÄÖµ£»
£¨2£©Èçͼ2£¬¡ÑOÓëÖ±½Ç±ßBCÏཻÓÚE¡¢FÁ½µã£¬ÇÒEΪ$\widehat{DF}$µÄÖе㣬Á¬½ÓAF£¬Çócos¡ÏCAFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª£ºBC=AC+AD£¬CDƽ·Ö¡ÏACB£¬ÇóÖ¤£º¡ÏA=2¡ÏB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®²»µÈʽax£¾aµÄ½â¼¯ÊÇx£¼1£¬ÔòaµÄȡֵ·¶Î§ÊÇa£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸