【题目】如图,已知:,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,若,则的边长为( )
A.6B.12C.16D.32
【答案】C
【解析】
先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=,得出△A1B1A2的边长为,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.
解:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,A1B1=A1A2,
∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,
∴∠MON=∠OB1A1,
∴B1A1=OA1=,
∴△A1B1A2的边长为,
同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=+=1,
∴△A2B2A3的边长为1,
同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:的直径与弦的夹角,过点作的切线交的延长线于点.
求证:;
的直径是,以点为圆心作圆,当半径为多长时,与相切?
若,求图中阴影部分的面积(结果精确到,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,点F在AC延长线上,,DE是△ABC中位线,如果∠1=30°,DE=2,则四边形AFED的周长是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在 中,,点 为的中点.
(1)如图1,E为线段DC上任意一点,将线段绕点D逆时针旋转90°得到线段,连接 ,过点F作,交直线 于点 .判断 与的数量关系并加以证明;
(2)如图2,若为线段的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;
(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.
i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;
ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
(1)该二次函数的关系式是 ,顶点坐标 .
(2)根据图象回答:当x满足 时,y>0;
(3)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com