【题目】抛物线y=x2﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为( )
A. 10 B. 7 C. 5 D. 8
【答案】A
【解析】
首先根据题意求得点A与B的坐标,求得抛物线的对称轴,然后作点A关于抛物线的对称轴x=1的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与直线x=1的交点是E,与x轴的交点是F,而且易得A′B′即是所求的长度.
如图 ,
∵抛物线y=x2-2x-15与直线y=4x-23交于A、B两点,
∴x2-2x-15=4x-23,
解得:x=2或x=4,
当x=2时,y=4x-23=-15,
当x=4时,y=4x-23=-7,
∴点 的坐标为(2,-15),点B的坐标为(4,-7),
∵抛物线对称轴方程为:x=-=1,
作点A关于抛物线的对称轴x=1的对称点A′,作点B关于x轴的对称点B′,
连接A′B′,
则直线A′B′与对称轴(直线x=1)的交点是E,与x轴的交点是F,
∴BF=B′F,AE=A′E,
∴点P运动的最短总路径是AE+EF+FB=A′E+EF+FB′=A′B′,延长B′B,A′A相交于C,
∴A′C=4,B′C=7+15=22,
∴A′B′==10.
∴点P运动的总路径的长为10.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,连接DE,过点D作DF⊥DE交BE于点F,G为BE中点,连接AF,DG.
(1)如图1,若点F与点G重合,求证:AF⊥DF;
(2)如图2,请写出AF与DG之间的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为,求△ABC的面积.小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:
(1)图1中△ABC的面积为 ;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为、2、的格点△DEF;
②计算△DEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
A. 线段EC B. 线段AE C. 线段EF D. 线段BF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象的顶点为点,与轴交于点,与轴交于、两点,点在原点的左侧,点的坐标为,,.
()求这个二次函数的表达式.
()经过、两点的直线,与轴交于点,在该抛物线上是否存在这样的点,使以点、、、为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
()如图,若点是该抛物线上一点,点是直线下方的抛物线上一动点,当点运动到什么位置时,的面积最大?求出此时点的坐标和的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com