【题目】如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
【答案】C
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示
在中,当y=0时,,解得x=-8,A点坐标为,
当x=0时,,B点坐标为,
∵点C、D分别为线段AB、OB的中点,
∴点C(-4,3),点D(0,3),CD∥x轴,
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-3),点O为线段DD′的中点.
又∵OP∥CD,
∴OP为△CD′D的中位线,点P为线段CD′的中点,
∴点P的坐标为,
故选:C.
科目:初中数学 来源: 题型:
【题目】抛物线y=x2﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为( )
A. 10 B. 7 C. 5 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】胖娃、猴子两人在1800米长的直线道路上跑步,胖娃、猴子两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,胖娃出发30秒后,猴子出发,猴子到终点后立即返回,并以原来的速度前进,最后与胖娃相遇,此时跑步结束. 如图,(米)表示胖娃、猴子两人之间的距离,x(秒)表示胖娃出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系.那么,猴子到终点后_______秒与胖娃相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,延长BC至E,连接DE,F为DE的中点,连结AF、CF且AF⊥CF.
求证:(1)∠ADF=∠BCF;
(2)BD=AD+CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:
(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
(2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )
A. 签约金额逐年增加
B. 与上年相比,2019年的签约金额的增长量最多
C. 签约金额的年增长速度最快的是2016年
D. 2018年的签约金额比2017年降低了22.98%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边三角形的边长为,将其放置在如图所示的平面直角坐标系中,其中边在轴上,边的高在轴上.一只电子虫从出发,先沿轴到达点,再沿到达点,已知电子虫在轴上运动的速度是在上运动速度的倍,若电子虫走完全程的时间最短,则点的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com