精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).

(1)试在平面直角坐标系中,标出A、B、C三点;
(2)求△ABC的面积.
(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标,并画出△A1B1C1

【答案】
(1)

解:如图A、B、C三点即为所求


(2)

解:SABC= ×2×5=5


(3)

解:A1、B1、C1的坐标为:A1(0,﹣4),B1(2,﹣4),C1(3,1),

△A1B1C1即为所求


【解析】(1)直接利用已知点在坐标系中标出各点;(2)直接利用三角形面积求法得出答案;(3)利用关于x轴对称点的性质得出各点位置进而得出答案.
【考点精析】关于本题考查的坐标与图形变化-平移,需要了解新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB∥CD,∠BCD的三等分线是CP,CQ,又CR⊥CP,若∠B=78°,则∠RCE=(
A.66°
B.65°
C.58°
D.56°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线ACBD相交于点O,延长CB至点F,使CF=CA,连接AFACF的平分线分别交AFABBD于点ENM,连接EO

1)已知BD=,求正方形ABCD的边长;

2)猜想线段EMCN的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论: ①AE=CF;
②△EPF是等腰直角三角形;
③S四边形AEPF= SABC
④当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合) BE+CF=EF.
上述结论中始终正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,B=60°,BC=2,A′B′C可以由ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实践探究,解决问题
如图1,△ABC中,AD为BC边上的中线,则SABD=SACD

(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,且AB=4,AD=8,则S阴影=

(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴影和S平行四边形ABCD之间满足的关系式为

(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴影和S四边形ABCD之间还满足(2)中的关系式吗?若满足,请予以证明,若不满足,说明理由.
解决问题:

(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和(即S1+S2+S3+S4的值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】检验下列因式分解是否正确.

(1)9b2-4a2=(2a+3b)(2a-3b);

(2)x2-3x-4=(x+4)(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为_____元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用yx的函数关系式是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案