【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
【答案】(1)1(2)CN=CM
【解析】试题分析:(1)利用正方形的性质和勾股定理计算即可;
(2)先判断出EO为△AFC的中位线,再由EO∥BC得出,进而利用直角三角形得出CM=EM,再判断出△CBN∽△COM得出比例式,进而得出CN=CM,即可得出结论.
试题解析:(1)∵四边形ABCD是正方形,
∴△ABD是等腰直角三角形,
∴2AB2=BD2,
∵BD=,
∴AB=1,
∴正方形ABCD的边长为1;
(2)CN=2CM
理由:∵四边形ABCD是正方形,
∴AC⊥BD,OA=OC
∵CF=CA,AF是∠ACF的平分线,
∴CE⊥AF,AE=FE
∴EO为△AFC的中位线
∴EO∥BC
∴
∴在Rt△AEN中,OA=OC
∴EO=OC=AC,
∴CM=EM
∵AF平分∠ACF,
∴∠OCM=∠BCN,
∵∠NBC=∠COM=90°,
∴△CBN∽△COM,
∴,
∴CN=CM.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,BD分别平分∠CAB和∠CBA,相交于点D.
(1)如图1,过点D作DE∥AC,DF∥BC分别交AB于点E、F. ①若∠EDF=80°,则∠C为多少?
②若∠EDF=x°,证明:∠ADB=(90+ )°.
(2)如图2,若DE,BE分别平分∠ADB和∠ABD,且EF,BF分别平分∠BED和∠EBD,若∠BFE的度数是整数,求∠BFE至少是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB=,BC=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,﹣1).
(1)试在平面直角坐标系中,标出A、B、C三点;
(2)求△ABC的面积.
(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标,并画出△A1B1C1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com