精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.

公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为杠杆原理,通俗地说,杠杆原理为:

阻力×阻力臂=动力×动力臂

(问题解决)

若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N0.4m

1)动力FN)与动力臂lm)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?

2)若想使动力FN)不超过题(1)中所用力的一半,则动力臂至少要加长多少?

(数学思考)

3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.

【答案】400N1.5米;见解析

【解析】

试题(1)、根据杠杆定律求得函数的解析式后代入l=1.5求得力的大小即可;(2)、将求得的函数解析式变形后求得动力臂的大小,然后即可求得增加的长度;(3)、利用反比例函数的知识结合杠杆定律进行说明即可.

试题解析:(1)、根据杠杆定律FL=1500×0.4函数的解析式为F=

L=1.5时,F==400, 因此,撬动石头需要400N的力;

(2)、由(1)FL=600函数解析式可以表示为:L=, 当F=400×=200时,L=3

3﹣1.5=1.5m), 因此若用力不超过400N的一半,则动力臂至少要加长1.5米;

(3)、因为撬棍工作原理遵循杠杆定律,当阻力与阻力臂一定时,其乘积为常数,设其为k,则动力F与动力臂L的函数关系式为F=,根据反比例函数的性质可知,动力F随动力臂l的增大而减小,所以动力臂越长越省力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC、BD相交于点O,过点OOEBCE点,连接DEOCF点,作FGBCG点,则ABCFGC是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面与通道平行),通道水平宽度8米, ,通道斜面 的长为6米,通道斜面的坡度.

(1)求通道斜面的长为 ;

(2)为增加市民行走的舒适度,拟将设计图中的通道斜面的坡度变缓,修改后的通道斜面的坡角为30°,求此时的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块直角三角板的直角顶点P放在矩形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.

(1)请你写出一对相似三角形,并加以证明;

(2)若AB=6,BC=8,当PD=3PQ时,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的售价p(元/千克)与时间t(天)之间的函数表达式为

p

且其日销售量y(kg)与时间t(天)的关系如下表:

时间t(天)

1

3

6

10

20

40

日销售量y(kg)

118

114

108

100

80

40

(1)已知yt之间的变化规律符合一次函数关系,试求第30天的日销售量是多少?

(2)问:哪一天的销售利润最大?最大日销售利润为多少?

(3)在实际销售的前24天中,公司决定每销售1 kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与直线相交于BC两点,连结AC两点。

1)写出直线BC的解析式

2)求△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+3y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点CCBx轴于点B,AO=3BO,则反比例函数的解析式为( )

A. y= B. y=- C. y= D. y=-

查看答案和解析>>

同步练习册答案