【题目】小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):
(1)请直接写出:花园的半径是 米,小明的速度是 米/分,a= ;
(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:
①小明遇到同学的地方离出发点的距离;
②小明返回起点O的时间.
【答案】(1)100,50,8;(2)①50米,②12分钟.
【解析】
由t在2-a变化时,S不变可知,半径为100米,速度为50米/分;
①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分, 可求出已经行走路程,用全程路程减去已走路程即可; ②可求全程时间为500用时10分钟,再加上停留2分钟即可.
解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分, 半圆弧长为100π=300米,则a=2+=8 ,故答案为:100,50,8.
(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米,
全程长100+300+100=500米,则小明离出发点距离为50米;
②小明返回起点O的时间为+2=12分.
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点按如图方式叠放在一起.
(1)如图(1)若,求的度数,若,求的度数;
(2)如图(2)若,求的度数;
(3)猜想与的数量关系,并结合图(1)说明理由;
(4)三角尺不动,将三角尺的边与边重合,然后绕点按顺时针或逆时针方向任意转动一个角度,当()等于多少度时,这两块三角尺各有一条边互相垂直,直接写出角度所有可能的值,不用说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.
(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )
A. 16张 B. 18张 C. 20张 D. 21张
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.
(1)求△AOB的面积;
(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图10,在三角形ABC中,∠ACB>90°.
(1)按下列要求画出相应的图形.
①延长BC至点D,使BD=2BC,连接AD;
②过点A画直线BC的垂线,垂足为点E;
③过点C画CG∥AB,CG与AE交于点F,与AD交于点G;
(2)在(1)所画出的图形中,按要求完成下列问题.
①点A、D之间的距离是线段_____的长;点A到线段BC所在的直线的距离是线段___的长,约等于____mm(精确到1mm);
②试说明∠ACD=∠B+∠BAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD∥BC,∠1=∠B,∠2=∠3.
(1)试说明AB∥DE;
(2)AF与DC的位置关系如何;为什么;
(3)若∠B=68°,∠C=46°20′,求∠2的度数.
注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.
解:
(1)∵AD∥BC,(已知)
∴∠1=∠ . ( )
又∵∠1=∠B,(已知)
∴∠B=∠ ,(等量代换)
∴ ∥ . ( )
(2)AF与DC的位置关系是: .理由如下:
∵AB∥DE,(已知)
∴∠2=∠ . ( )
又∵∠2=∠3,(已知)
∴∠ =∠ .(等量代换)
∴ ∥ . ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A',则A'C的最小值为( )
A.B.C.D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从点A看一山坡上的电线杆PQ,观测杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ的高度(精确到0.1 m).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com