如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.
![]()
(1)证明见解析;(2)当BC=2AB时,菱形AEDF为正方形.理由见解析.
【解析】
试题分析:(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,根据菱形的四条边都相等可得AE=DE,然后利用“HL”证明Rt△ABE和Rt△DCE全等即可;
(2)BC=2AB时,菱形AEDF为正方形.根据全等三角形对应边相等可得BE=CE,然后求出AB=BE,从而求出∠BAE=∠AEB=45°,同理可得∠DEC=45°,然后求出∠AED=90°,最后根据有一个角是90°的菱形是正方形判断.
(1)证明:∵四边形ABCD为矩形,
∴∠B=∠C=90°,AB=DC,
∵四边形AEDF为菱形,
∴AE=DE,
在Rt△ABE和Rt△DCE中,
,
∴Rt△ABE≌Rt△DCE(HL);
(2)【解析】
当BC=2AB时,菱形AEDF为正方形.
理由:∵Rt△ABE≌Rt△DCE,
∴BE=CE,∠AEB=∠DEC,
又∵BC=2AB,
∴AB=BE,
∴∠BAE=∠AEB=45°,
同理可得,∠DEC=45°,
∵∠AEB+∠AED+∠DEC=180°,
∴∠AED=180°-∠AEB-∠DEC=90°,
∴菱形AEDF是正方形.
考点:1.矩形的性质;2.菱形的性质;3.正方形的判定;4. 全等三角形的判定与性质.
科目:初中数学 来源:2013-2014学年江苏省太仓市九年级5月学科教学质量调研数学试卷(解析版) 题型:选择题
在坐标系中,已知四个点,坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),在A1、A2和B1、B2中分别各取一个点,与原点O连接构成三角形,则所得三角形是等腰三角形的概率是
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省南京市溧水区中考一模数学试卷(解析版) 题型:解答题
南京市体育中考现场考试男生有三项内容:三 分钟跳绳、1000米跑(二选一);引体向上、实心球(二选一);立定跳远、50米跑(二选一).小明三分钟跳绳是强项,他决定必选,其它项目在平时测试中成绩完全相同,他决定随机选择.
(1)用画树状图或列表的方法求:
①他选择的项目是三分钟跳绳、实心球、立定跳远的概率是 多少?
②他选择的项目中有立定跳远的概率是多少?
(友情提醒:各个项目可用A、B、C、…等符号来代表可简化解答过程)
(2)如果他决定用掷硬币的方法确定除三分钟跳绳外的其它两项考试项目,请你帮他设计一个合理的方案.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省南京市六合区中考一模数学试卷(解析版) 题型:解答题
如图,以O为圆心的弧
度数为60 o,∠BOE=45o ,DA⊥OB,EB⊥OB.
(1)求
的值;
(2)若OE与
交于点M,OC平分∠BOE,连接CM.说明:CM为⊙O的切线;
(3)在(2)的条件下,若BC=1,求tan∠BCO的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省南京市六合区中考一模数学试卷(解析版) 题型:填空题
在函数y=-
的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是 .
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省兴化市九年级中考网上阅卷适应性训练(即一模)数学试卷(解析版) 题型:解答题
如图,在Rt△ABC中,AC=8,AB=10,DE是中位线, 则圆心在直线AC上,且与DE、AB都相切的⊙O的半径长是 .
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏大丰刘庄第二初中九年级下学期第一次月考数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=
,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.
![]()
(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有
?
②直接写出ΔCDF的外接圆与OA相切时t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com