【题目】如图,AB是⊙O的直径,过点A的直线PC交⊙O于A,C两点,AD平分∠PAB,射线AD交⊙O于点D,过点D作DE⊥PA于点E.
(1)求证:ED为⊙O的切线;
(2)若AB=10,ED=2AE,求AC的长.
【答案】(1)ED为⊙O的切线,见解析;(2)6
【解析】
(1)连接AD,根据角平分线的定义得到∠DAE=∠DAO,得到∠ODA=∠DAE,根据平行线的性质得到OD⊥DE,于是得到结论;
(2)过O作OH⊥PC,则四边形EHOD是矩形,求得OH=DE,EH=OD,设AE=x,则DE=2x,根据勾股定理列方程即可得到结论.
解:(1)连接AD,∵AD平分∠PAB,
∴∠DAE=∠DAO,
∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AE,
∴OD⊥DE,
∴ED为⊙O的切线;
(2)过O作OH⊥PC,
则四边形EHOD是矩形,
∴OH=DE,EH=OD,
∵AB=10,
∴EH=OD=5,
∵ED=2AE,
∴设AE=x,则DE=2x,
∴AH=5﹣x,OH=2x,
∵OA2=AH2+OH2,
∴52=(5﹣x)2+(2x)2,
解得:x=2,x=0(不合题意舍去),
∴AE=2,AH=3,
∴AC=6.
科目:初中数学 来源: 题型:
【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.
(1)当时,求的度数;
(2)求证:;
(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级 | 平均分 | 中位数 | 方差 |
甲班 | |||
乙班 |
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠C=90°.
(1)请你用没有刻度的直尺和圆规,在线段AB上找一点F,使得点F到边AC的距离等于FB.(注:不写作法,保留作图痕迹,对图中涉及到的点的用字母进行标注)
(2)在(1)的情况下,若BC=5,AC=12,则AF= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com