精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形的边长为,点在边上,连接,过点,与的延长线相交于点,连接,与边相交于点,与对角线相交于点.若,则的长为(

A.B.C.D.

【答案】C

【解析】

在正方形ABCD中,由FDDE垂直,利用等式的性质得到一对角相等,再由一对直角相等,且AD=DC,利用AAS得到三角形DAE与三角形DCF全等,利用全等三角形对应边相等得到AE=CF,进而求出BE的长

∵在正方形ABCD中,∠BCD=90°BC=CD=6

BD=6

DFDE

∴∠ADE+EDC=90°,∠EDC+CDF=90°

∴∠ADE=CDF

ADECDF中,

∴△ADE≌△CDFASA),

AE=CF

又∵BD=BF=6

AE=CF=BF-BC=6-6

BE=AB-AE=6-6-6=12-6

BE的长为12-6

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线ykx+b经过点A02),B(﹣40)和抛物线yx2

1)求直线的解析式;

2)将抛物线yx2沿着x轴向右平移,平移后的抛物线对称轴左侧部分与y轴交于点C,对称轴右侧部分抛物线与直线ykx+b交于点D,连接CD,当CDx轴时,求平移后得到的抛物线的解析式;

3)在(2)的条件下,平移后得到的抛物线的对称轴与x轴交于点EP为该抛物线上一动点,过点P作抛物线对称轴的垂线,垂足为Q,是否存在这样的点P,使以点EPQ为顶点的三角形与AOB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,GCD边中点,连接AG并延长交BC边的延长线于E点,对角线BDAGF点.已知FG2,则线段AE的长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)数学理解:如图①,是等腰直角三角形,过斜边的中点作正方形,分别交于点,求证:

2)问题解决:如图②,在任意直角内,找一点,过点作正方形,分别交于点,若,求的度数;

3)联系拓广;如图③,在(2)的条件下,分别延长,交于点,若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校对交通法则的了解情况在全校随机调查了部分学生,调查结果分为四种:.非常了解,.比较了解,.基本了解,.不太了解,并将此次调查结果整理绘制成下面不完整的条形统计图和扇形统计图.

1)本次共调查_______名学生;扇形统计图中所对应扇形的圆心角度数是_______

2)补全条形统计图;

3)学校准备从甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲、乙两地相距车和车分别从甲地和乙地同时出发,相向而行,沿同一 条公路驶往乙地和甲地后,车因临时需要,返回到这条公路上的丙地取物,然后又立即赶往乙地,结果比车晚到达目的地.两车的速度始终保持不变,如图是两车距各自出 发地的路程(单位:)(单位:) 车出发时间(单位:)的函数图象,请结合图象信息解答下列问题:

1A车的速度为 车的速度为

2)求甲、丙两地的距离;

3)求车出发多长时间,两车相距

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣x+m的图象与反比例函数的图象交于AB两(点A在点B的左侧),点Px轴上一动点,当有且只有一个点P,使得∠APB90°,则m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB2BC10EF分别在边BCAD上,BEDF.将△ABE△CDF分别沿着AECF翻折后得到△AGE△CHF.若AGCH分别平分∠EAD∠FCB,则GH长为(

A.3B.4C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,点边上的动点(点不与点重合).以为顶点作,射线边于点,过点交射线于点,连接

1)求证:

2)当时(如图2),求的长;

3)点边上运动的过程中,是否存在某个位置,使得?若存在,求出此时的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案